20.設(shè)函數(shù)f(x)=ekx-1(k∈R).
(Ⅰ)當(dāng)k=1時,求曲線y=f(x)在點(0,f(0))處的切線方程;
(Ⅱ)設(shè)函數(shù)F(x)=f(x)+x2-kx,證明:當(dāng)x∈(0,+∞)時,F(xiàn)(x)>0.

分析 (Ⅰ)求出f(x)的導(dǎo)數(shù),可得切線的斜率和切點,由點斜式方程即可得到所求;
(Ⅱ)求出F'(x),令g(x)=kekx+2x-k,求得導(dǎo)數(shù),判斷單調(diào)性,即可得證.

解答 (本小題滿分13分)
解:(Ⅰ)f′(x)=ex,….(1分)
將x=0分別代入f(x)和f′(x)得,f′(0)=1,f(0)=0….(3分)
所以曲線在點(0,f(0))處的切線方程為:y=x.….(4分)
(Ⅱ)證明:F'(x)=kekx+2x-k….(6分)
令g(x)=kekx+2x-k,則g'(x)=k2ekx+2….(8分)
∵ekx>0,k2≥0,∴g'(x)=k2ekx+2>0….(10分)
∴g(x)在(0,+∞)上單調(diào)遞增,
∴g(x)>g(0)=0即F'(x)>0,….(11分)
∴F(x)在(0,+∞)上單調(diào)遞增,
∴F(x)>F(0)=0….(13分)

點評 本題考查導(dǎo)數(shù)的運用:求切線方程和單調(diào)區(qū)間,考查不等式的證明,注意運用單調(diào)性,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,正方形ABCD邊長為1,從某時刻起,將線段AB,BC,CD,DA分別繞點A,B,C,D順時針旋轉(zhuǎn)相同角度α(0<α<$\frac{π}{2}$),若旋轉(zhuǎn)后的四條線段所圍成的封閉圖形面積為$\frac{1}{2}$,則α=( 。
A.$\frac{π}{12}$或$\frac{5π}{12}$B.$\frac{π}{12}$或$\frac{π}{3}$C.$\frac{π}{6}$或$\frac{5π}{12}$D.$\frac{π}{6}$或$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知橢圓C:$\frac{{x}^{2}}{4}$+y2=1的左頂點為A,右頂點為B,點P是橢圓C上位于x軸上方的動點,直線AP,BP與直線y=3分別交于G,H兩點,則線段GH的長度的最小值是( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.直線$l:x-\sqrt{3}y+1=0$的斜率為$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,右頂點為E,過F1于x軸垂直的直線與橢圓C相交,其中一個交點為M(-$\sqrt{3}$,$\frac{1}{2}$).
(I)求橢圓C的方程;
(II)經(jīng)過點P(1,0)的直線l與橢圓交于A,B兩點.
(i)若直線AE,BE的斜率為k1,k2(k1≠0,k2≠0),證明:k1•k2為定值;
(ii)若O為坐標(biāo)原點,求△OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.2016年年底,某商業(yè)集團根據(jù)相關(guān)評分標(biāo)準,對所屬20家商業(yè)連鎖店進行了年度考核評估,并依據(jù)考核評估得分(最低分60分,最高分100分)將這些連鎖店分別評定為A,B,C,D四個類型,其考核評估標(biāo)準如表:
評估得分[60,70)[70,80)[80,90)[90,100]
評分類型DCBA
考核評估后,對各連鎖店的評估分數(shù)進行統(tǒng)計分析,得其頻率分布直方圖如下:
(Ⅰ)評分類型為A的商業(yè)連鎖店有多少家;
(Ⅱ)現(xiàn)從評分類型為A,D的所有商業(yè)連鎖店中隨機抽取兩家做分析,求這兩家來自同一評分類型的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若x>0,則函數(shù)f(x)=$\frac{2}{x}$+x的最小值為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知向量$\overrightarrow{a}$=(-3,1),$\overrightarrow$=(1,-2),$\overrightarrow{m}$=$\overrightarrow{a}$+k$\overrightarrow$(k∈R).
(1)若$\overrightarrow{m}$與向量2$\overrightarrow{a}$-$\overrightarrow$垂直,求實數(shù)k的值;
(2)若向量$\overrightarrow{c}$=(1,-1),且$\overrightarrow{m}$與向量k$\overrightarrow$+$\overrightarrow{c}$平行,求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.己知函數(shù)y=f(x)-2x是偶函數(shù),且f(1)=2,則f(-1)=( 。
A.2B.-2C.0D.1

查看答案和解析>>

同步練習(xí)冊答案