設離散型隨機變量ξ可能取的值為1,2,3,4;P(ξ=k)=αk(k=1,2,3,4),則α=
 
考點:離散型隨機變量的期望與方差
專題:概率與統(tǒng)計
分析:由已知得α(1+2+3+4)=1,由此能求出α的值.
解答: 解:∵離散型隨機變量ξ可能取的值為1,2,3,4,
P(ξ=k)=αk(k=1,2,3,4),
∴α(1+2+3+4)=1,
解得α=
1
10

故答案為:
1
10
點評:本題考查概率的求法,是基礎題,解題時要認真審題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某品牌飲料為了擴大其消費市場,特實行“再來一瓶”有獎促銷活動.該品牌飲料的瓶蓋內或刻有“再來一瓶”字樣,或刻有“謝謝惠顧”字樣,如見瓶蓋內刻有“再來一瓶”字樣,即可憑該瓶蓋,在指定零售地點兌換相同規(guī)格的飲料一瓶,本次活動中獎的概率為
1
5
.今年春節(jié)期間有甲、乙、丙3位朋友聚會,選用6瓶這種飲料,并限定每人喝2瓶,求:
(1)甲喝的2瓶飲料都中獎的概率;
(2)甲、乙、丙3人中恰有2人喝到中獎飲料的概率;
(3)記ξ為甲、乙、丙3人中喝到中獎飲料的人數(shù),求ξ的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

F1、F2是雙曲線
y2
9
-
x2
16
=1的兩個焦點,M是雙曲線上一點,且|MF1|•|MF2|=32,△F1MF2的面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

學科王設函數(shù)f(x)=
x+1,x<1
4-
x-1
,x≥1
,則使得f(x)≥1的自變量x的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線x+y+a=0與圓x2+y2=1交于不同的兩點A、B,O是坐標原點,且|
OA
+
OB
|≥|
AB
|
,那么實數(shù)a的取值范圍是(  )
A、(-
2
,-1]∪[1,
2
)
B、(-
2
,0)∪(0,
2
)
C、(-
2
,-1]∪(0,
2
)
D、(-
2
,
2
)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C:x2+y2=144和直線l:kx-y+13k=0有兩個不同的公共點A,B
(1)求實數(shù)k的取值范圍;
(2)若直線l被圓C截得的弦長大于半徑,求整數(shù)k可能的取值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求過點A(2,0)與圓x2+y2=16相內切的圓的圓心P的軌跡.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

方程32x+1+2•49x=5•21x的解是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
cosπx,x>0
f(x+1),x<0
,則f(-
4
3
)
的值為
 

查看答案和解析>>

同步練習冊答案