袋中裝有黑球和白球共7個,從中任取兩個球都是白球的概率為.現(xiàn)有甲、乙兩人從袋中輪流摸球,甲先取,乙后取,然后甲再取……取后不放回,直到兩人中有1人取到白球時即終止.每個球在每一次被取出的機會是等可能的.

(1)求袋中原有白球的個數(shù);

(2)求取球2次終止的概率;

(3)求甲取到白球的概率.

(1)3(2)(3)


解析:

(1)設(shè)袋中有n個白球,從袋中任取2個球是白球的結(jié)果數(shù)是.

從袋中任取2個球的所有可能的結(jié)果數(shù)為=21.

由題意知==,

∴n(n-1)=6,解得n=3(舍去n=-2).

故袋中原有3個白球.

(2)記“取球2次終止”為事件A,則P(A)==.

(3)記“甲取到白球”的事件為B,

“第i次取到白球”為Ai,i=1,2,3,4,5,

因為甲先取,所以甲只有可能在第1次,第3次和第5次取球.

所以P(B)=P(A1+A3+A5).

因此A1,A3,A5兩兩互斥,

∴P(B)=P(A1)+P(A3)+P(A5

=++

=++=.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

袋中裝有黑球和白球共7個,從中任取2個球都是白球的概率為
17
.現(xiàn)有甲、乙兩人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取…取后不放回,直到兩人中有一人取到白球時即終止.每個球在每一次被取出的機會是等可能的,
(I)求袋中原有白球的個數(shù)和;
(II)求取球兩次停止的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

袋中裝有黑球和白球共7個,從中任取1個球是白球的概率為
37
.現(xiàn)有甲、乙兩人從袋中輪流摸取1球,取后不放回:甲先取,乙后取,然后甲再取…,直到兩人中有一人取到白球時即終止.每個球在每一次被取出的機會是等可能的.
(1)求取球2次終止的概率;
(2)求甲取到白球的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

袋中裝有黑球和白球共7個,從中任取2個球都是白球的概率為
17
.現(xiàn)在甲、乙兩人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取…取后不放回,直到兩人中有一人取到白球時即終止,每個球在每一次被取出的機會是等可能的.
(1)求袋中原有白球的個數(shù);
(2)求取球兩次終止的概率
(3)求甲取到白球的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

袋中裝有黑球和白球共7個,從中任取2個球都是白球的概率為
17
,現(xiàn)有甲、乙兩人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取…,取后不放回,直到兩人中有一人取到白球時即終止,每個球在每一次被取出的機會是等可能的,用ξ表示取球終止所需要的取球次數(shù).
(1)求袋中原有白球的個數(shù);
(2)求隨機變量ξ的概率分布;
(3)求甲取到白球的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•鹽城一模)袋中裝有黑球和白球共7個,從中任取2個球都是白球的概率為
27
.現(xiàn)在甲、乙兩人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取,…,取后不放回,直到兩人中有一人取到白球時即終止.每個球在每一次被取出的機會是等可能的,用ξ表示取球終止時所需要的取球次數(shù).
(Ⅰ)求袋中原有白球的個數(shù);
(Ⅱ)求隨機變量ξ的概率分布及數(shù)學期望Eξ;
(Ⅲ)求甲取到白球的概率.

查看答案和解析>>

同步練習冊答案