【題目】某校為了解學(xué)生對(duì)消防安全知識(shí)的掌握情況,開(kāi)展了網(wǎng)上消防安全知識(shí)有獎(jiǎng)競(jìng)賽活動(dòng),并對(duì)參加活動(dòng)的男生、女生各隨機(jī)抽取20人,統(tǒng)計(jì)答題成績(jī),分別制成如下頻率分布直方圖和莖葉圖:

1)把成績(jī)?cè)?/span>80分以上(含80分)的同學(xué)稱為“安全通”.根據(jù)以上數(shù)據(jù),完成以下列聯(lián)表,并判斷是否有95%的把握認(rèn)為是否是“安全通”與性別有關(guān)

男生

女生

合計(jì)

安全通

非安全通

合計(jì)

2)以樣本的頻率估計(jì)總體的概率,現(xiàn)從該校隨機(jī)抽取22女,設(shè)其中“安全通”的人數(shù)為,求的分布列與數(shù)學(xué)期望.

附:參考公式,其中.

參考數(shù)據(jù):

0.100

0.050

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

【答案】1)填表見(jiàn)解析;沒(méi)有95%的把握認(rèn)為“安全通”與性別有關(guān)(2)詳見(jiàn)解析

【解析】

1)根據(jù)題目所給數(shù)據(jù),計(jì)算并填寫(xiě)好列聯(lián)表.計(jì)算出的值,由此判斷沒(méi)有95%的把握認(rèn)為“安全通”與性別有關(guān).

2)根據(jù)相互獨(dú)立事件概率乘法公式,結(jié)合男生、女生中安全通的人數(shù),計(jì)算出分布列,進(jìn)而求得數(shù)學(xué)期望.

1)由題知,女生樣本數(shù)據(jù)中“安全通”為6人,非“安全通”為14人,男生樣本中“安全通”人數(shù)為人,非“安全通”的人數(shù)為8人,列出列聯(lián)表如下:

男生

女生

合計(jì)

安全通

12

6

18

非安全通

8

14

22

合計(jì)

20

20

40

假設(shè):“安全通”與性別無(wú)關(guān),

所以的觀測(cè)值為

所以沒(méi)有95%的把握認(rèn)為“安全通”與性別有關(guān).

2)由題知,隨機(jī)選1女生為“安全通”的概率為0.3,選1男生為“安全通”的概率為0.6,的可能取值為0,12,34,

,

,

,

,

所以的分布列為

0

1

2

3

4

0.0784

0.3024

0.3924

0.1944

0.0324

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(其中).

(1)當(dāng)時(shí),求函數(shù)的圖像在處的切線方程;

(2)若恒成立,求的取值范圍;

(3)設(shè),且函數(shù)有極大值點(diǎn),求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸的非負(fù)半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.

1)寫(xiě)出直線的普通方程和曲線C的直角坐標(biāo)方程;

2)已知定點(diǎn),直線與曲線C分別交于P、Q兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,已知曲線C1x2+y2=1,以平面直角坐標(biāo)系xoy的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,已知直線ρ(2cosθ-sinθ)=6.

)將曲線C1上的所有點(diǎn)的橫坐標(biāo),縱坐標(biāo)分別伸長(zhǎng)為原來(lái)的2倍后得到曲線C2,試寫(xiě)出直線的直角坐標(biāo)方程和曲線C2的參數(shù)方程.

)在曲線C2上求一點(diǎn)P,使點(diǎn)P到直線l的距離最大,并求出此最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以昆明、玉溪為中心的滇中地區(qū),冬無(wú)嚴(yán)寒、夏無(wú)酷暑,世界上主要的鮮切花品種在這里都能實(shí)現(xiàn)周年規(guī);a(chǎn).某鮮花批發(fā)店每天早晨以每支2元的價(jià)格從鮮切花生產(chǎn)基地購(gòu)入某種玫瑰,經(jīng)過(guò)保鮮加工后全部裝箱(每箱500支,平均每支玫瑰的保鮮加工成本為1元),然后以每箱2000元的價(jià)格整箱出售.由于鮮花的保鮮特點(diǎn),制定了如下促銷策略:若每天下午3點(diǎn)以前所購(gòu)進(jìn)的玫瑰沒(méi)有售完,則對(duì)未售出的玫瑰以每箱1200元的價(jià)格降價(jià)處理.根據(jù)經(jīng)驗(yàn),降價(jià)后能夠把剩余玫瑰全部處理完畢,且當(dāng)天不再購(gòu)進(jìn)該種玫瑰,由于庫(kù)房限制每天最多加工6.

1)若某天該鮮花批發(fā)店購(gòu)入并加工了6箱該種玫瑰,在下午3點(diǎn)以前售出4箱,且被6位不同的顧客購(gòu)買.現(xiàn)從這6位顧客中隨機(jī)選取2人贈(zèng)送優(yōu)惠卡,則恰好一位是以2000元價(jià)格購(gòu)買的顧客,另一位是以1200元價(jià)格購(gòu)買的顧客的概率是多少?

2)該鮮花批發(fā)店統(tǒng)計(jì)了100天內(nèi)該種玫瑰在每天下午3點(diǎn)以前的銷售量(單位:箱),統(tǒng)計(jì)結(jié)果如下表所示(視頻率為概率):

/

4

5

6

頻數(shù)

30

①估計(jì)接下來(lái)的一個(gè)月(30天)內(nèi)該種玫瑰每天下午3點(diǎn)以前的銷售量不少于5箱的天數(shù)是多少?

②若批發(fā)店每天在購(gòu)進(jìn)5箱數(shù)量的玫瑰時(shí)所獲得的平均利潤(rùn)最大(不考慮其他成本),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx=|x-m|-|2x+2m|m0).

(Ⅰ)當(dāng)m=1時(shí),求不等式fx)≥1的解集;

(Ⅱ)若xR,tR,使得fx+|t-1||t+1|,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的一個(gè)頂點(diǎn)與拋物線的焦點(diǎn)重合,分別是橢圓的左、右焦點(diǎn),離心率,過(guò)橢圓右焦點(diǎn)的直線與橢圓交于,兩點(diǎn).

(Ⅰ)求橢圓的方程;

(Ⅱ)是否存在直線,使得,若存在,求出直線的方程;若不存在,說(shuō)明理由;

(Ⅲ)設(shè)點(diǎn)是一個(gè)動(dòng)點(diǎn),若直線的斜率存在,且中點(diǎn),,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角梯形中,,過(guò)點(diǎn)于點(diǎn),以為折痕把折起,當(dāng)幾何體的的體積最大時(shí),則下列命題中正確的個(gè)數(shù)是( )

∥平面

與平面所成的角等于與平面所成的角

所成的角等于所成的角

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為,直線,過(guò)點(diǎn)且與拋物線分別交于點(diǎn)和點(diǎn),弦的中點(diǎn)分別為,若,則下列結(jié)論正確的是

______________

的最小值為32

②以四點(diǎn)為頂點(diǎn)的四邊形的面積的最小值為128

③直線過(guò)定點(diǎn)

④焦點(diǎn)可以同時(shí)為弦的三等分點(diǎn)

查看答案和解析>>

同步練習(xí)冊(cè)答案