(本題滿分14分)在直角坐標系中,以坐標原點為圓心的圓與直線:相切.
(1)求圓的方程;
(2)若圓上有兩點關(guān)于直線對稱,且,求直線MN的方程.
(1);(2)。
本試題主要是考查直線與圓的位置關(guān)系的運用。
(1)依題設(shè),圓的半徑等于原點到直線的距離,
即 
(2)由題意,可設(shè)直線MN的方程為。…………8分
則圓心到直線MN的距離,再結(jié)合垂徑定理得到結(jié)論。
(1)依題設(shè),圓的半徑等于原點到直線的距離,
即 .………………3分
得圓的方程為.                    ………………6分
(2)由題意,可設(shè)直線MN的方程為!8分
則圓心到直線MN的距離。               …………10分
由垂徑分弦定理得:,即。…………12分
所以直線MN的方程為:!14分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)
已知直線,圓.
(Ⅰ)證明:對任意,直線與圓恒有兩個公共點.
(Ⅱ)過圓心于點,當變化時,求點的軌跡的方程.
(Ⅲ)直線與點的軌跡交于點,與圓交于點,是否存在的值,使得?若存在,試求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若直線與曲線有兩個交點,則的取值范圍是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知一個圓C和軸相切,圓心在直線上,且在直線上截得的弦長為,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

點P(x,y)在直線上,則的最小值是___________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知A、B是圓O:上的兩點,且|AB|=6,若以AB為直徑的圓M恰好經(jīng)過
點C(1,-1),則圓心M的軌跡方程是              .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知直線:和圓C:,則直線與圓C的位置關(guān)系為        

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知一動圓P(圓心為P)經(jīng)過定點,并且與定圓(圓心為C)相切.
(1)求動圓圓心P的軌跡方程;
(2)若斜率為k的直線經(jīng)過圓的圓心M,交動圓圓心P的軌跡于A、B兩點.是否存在常數(shù)k,使得?如果存在,求出的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過直線上一點作圓的兩條切線、,為切點,當、關(guān)于直線對稱時,等于(   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案