設(shè)F1、F2是雙曲線
x2
4
-
y2
b2
=1的兩個(gè)焦點(diǎn),點(diǎn)P在雙曲線上,且∠F1PF2=90°,若△F1PF2的面積為2,則b等于
 
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)|PF1|=m,|PF2|=n,m>n,則m-n=4,由勾股定理可得4c2=m2+n2=4(4+b2),故mn=2b2,利用△F1PF2的面積為2,建立方程,即可求出b的值.
解答: 解:設(shè)|PF1|=m,|PF2|=n,m>n,則m-n=4,
∵4c2=m2+n2=4(4+b2
∴mn=2b2,
∵△F1PF2的面積為2,
1
2
•2b2
=2
∴b=±
2
,
故答案為:±
2
點(diǎn)評(píng):本題主要考查了雙曲線的簡(jiǎn)單性質(zhì)、解直角三角形.要靈活運(yùn)用雙曲線的定義及焦距、實(shí)軸、虛軸等之間的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足:a2+a4=22,S4=50.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{an}的前n項(xiàng)和Sn的最大值,并求Sn取最大值時(shí)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將3個(gè)不同的小球放入4個(gè)盒子中,則不同放法種數(shù)有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1,1),
b
=(-2,3),則(2
a
+
b
)•(
a
-
b
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

推理過程“大前提:
 
,小前提;四邊形ABCD是矩形,結(jié)論:四邊形ABCD的對(duì)角線相等.”應(yīng)補(bǔ)充的大前提是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項(xiàng)和是Sn,且Sn+
1
2
an=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記bn=log3
an2
4
,數(shù)列{
1
bnbn+2
}的前n項(xiàng)和為Tn,證明:Tn
3
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)坐標(biāo)平面內(nèi)有一個(gè)質(zhì)點(diǎn)從原點(diǎn)出發(fā),沿x軸跳動(dòng),每次向正方向或負(fù)方向跳1個(gè)單位,經(jīng)過5次跳動(dòng)質(zhì)點(diǎn)落在點(diǎn)(3,0)(允許重復(fù)過此點(diǎn))處,則質(zhì)點(diǎn)不同的運(yùn)動(dòng)方法共有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從雙曲線
x2
9
-
y2
16
=1的左焦點(diǎn)F引圓x2+y2=9的切線,切點(diǎn)為T,延長(zhǎng)FT交雙曲線右支于P點(diǎn),若M為線段FP的中點(diǎn),O為坐標(biāo)原點(diǎn),則|MO|-|MT|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是一個(gè)結(jié)構(gòu)圖,在□處應(yīng)填入( 。
A、對(duì)稱性B、解析式
C、奇偶性D、圖象交換

查看答案和解析>>

同步練習(xí)冊(cè)答案