若梯形的中位線被它的兩條對(duì)角線三等分,則梯形的上底a與下底b(a<b)的比是( 。
A、
1
2
B、
1
3
C、
2
3
D、
2
5
考點(diǎn):平行線分線段成比例定理
專題:選作題,立體幾何
分析:設(shè)梯形的中位線被對(duì)角線分成的每一份是x.根據(jù)梯形的中位線定理的位置關(guān)系,證明出三角形的中位線;再根據(jù)三角形的中位線定理,分別求得梯形的兩底,從而求得兩底比.
解答: 解:設(shè)梯形的中位線被對(duì)角線分成的每一份是x,則中位線為3x.
根據(jù)梯形的中位線定理,得梯形的中位線平行于兩底.
根據(jù)三角形中線定理,得它的上底邊為2x,下底邊=6x-2x=4x.
所以上底:下底=2x:4x=1:2.
故選:A.
點(diǎn)評(píng):此題綜合運(yùn)用了梯形的中位線定理和三角形的中位線定理,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知不等式
a
x-2
>1-a
(1)若a=x,求關(guān)于x不等式的解集;   
(2)若a≠1,求關(guān)于x不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在集合{1,2,3,4,5}中任取一個(gè)偶數(shù)a和一個(gè)奇數(shù)b構(gòu)成以原點(diǎn)為起點(diǎn)的向量
α
=(a,b),從所有得到的以原點(diǎn)為起點(diǎn)的向量中任取兩個(gè)向量為鄰邊作平行四邊形,記所有作成的平行四邊形的個(gè)數(shù)為t,在區(qū)間[1,
t
3
]和[2,4]分別各取一個(gè)數(shù),記為m和n,則方程
x2
m2
+
y2
n2
=1表示焦點(diǎn)在x軸上的橢圓的概率是( 。
A、
1
3
B、
3
4
C、
2
3
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由一組數(shù)據(jù)(x1,y1),(x2,y2),…,(xn,yn)得到的回歸直線方程
y
=
b
x+
a
,那么下面說(shuō)法不正確的是( 。
A、直線
y
=
b
x+
a
必經(jīng)過(guò)點(diǎn)(
.
x
.
y
B、直線
y
=
b
x+
a
至少經(jīng)過(guò)點(diǎn)(x1,y1),(x2,y2),…,(xn,yn)中的一個(gè)點(diǎn)
C、直線
y
=
b
x+
a
與各點(diǎn)(x1,y1),(x2,y2),…,(xn,yn)距離差平方的總和
n
i=1
[yi-(
b
xi+
a
)]
2
是該坐標(biāo)平面上所有直線與這些點(diǎn)的距離差平方的總和中最小的直線
D、直線
y
=
b
x+
a
的斜率為
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知C>1,a=
C+1
-
C
,b=
C
-
C-1
,則正確的結(jié)論是( 。
A、a<bB、a>b
C、a=bD、a與b的大小不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,AB=3,AC=2,BC=
5
,則
AB
AC
等于( 。
A、2B、4C、3D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sinx-
1
2
x(x∈[0,π]),那么下列結(jié)論正確的是( 。
A、f(x)在[0,
π
2
]上是增函數(shù)
B、f(x)在[
π
6
,π]上是減函數(shù)
C、?x∈[0,π],f(x)≤f(
π
3
D、?x∈[0,π],f(x)>f(
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正項(xiàng)等比數(shù)列{an}滿足a3=1,S3=13,bn=log3an,則數(shù)列{bn}的前10項(xiàng)和是(  )
A、65B、-65
C、25D、-25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

兩個(gè)正數(shù)
5
+1與
5
-1的等比中項(xiàng)是( 。
A、±2B、2C、-2D、4

查看答案和解析>>

同步練習(xí)冊(cè)答案