分析 (1)變形y=$\frac{x}{x-4}$=1+$\frac{4}{x-4}$,由0≤x≤6且x≠4,可得$\frac{4}{x-4}$∈(-∞,-1]∪[2,+∞),即可得出.
(2)變形y=$\frac{3x}{2x-4}$=$\frac{3}{2}$+$\frac{3}{x-2}$(x≠2),再利用反比例函數(shù)的單調(diào)性與值域即可得出.
解答 解:(1)y=$\frac{x}{x-4}$=$\frac{x-4+4}{x-4}$=1+$\frac{4}{x-4}$,
∵0≤x≤6且x≠4,∴$\frac{4}{x-4}$∈(-∞,-1]∪[2,+∞),
∴y=1+$\frac{4}{x-4}$∈(-∞,0]∪[3,+∞),
∴y=$\frac{x}{x-4}$(0≤x≤6且x≠4)的值域?yàn)椋?∞,0]∪[3,+∞).
(2)y=$\frac{3x}{2x-4}$=$\frac{\frac{3}{2}(2x-4)+6}{2x-4}$=$\frac{3}{2}$+$\frac{3}{x-2}$(x≠2).
∵$\frac{3}{x-2}$∈(-∞,0)∪(0,+∞),
∴y=$\frac{3}{2}$+$\frac{3}{x-2}$∈$(-∞,\frac{3}{2})$∪$(\frac{3}{2},+∞)$.
點(diǎn)評 本題考查了反比例函數(shù)的單調(diào)性與值域,考查了變形能力與計算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(\frac{π}{2},π)$ | B. | $(\frac{π}{2},\frac{3π}{2})$ | C. | $(\frac{π}{2},π)∪(\frac{7}{4}π,2π)$ | D. | $(\frac{π}{2},π)∪(\frac{3}{2}π,2π)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com