16.復(fù)數(shù)z1=2+i,若復(fù)數(shù)z1,z2在復(fù)平面內(nèi)的對應(yīng)點(diǎn)關(guān)于虛軸對稱,則z1z2=(  )
A.-5B.5C.-3+4iD.3-4i

分析 由題意可知z2=-2+i,再利用復(fù)數(shù)的運(yùn)算法則即可得出.

解答 解:由題意可知z2=-2+i,
所以z1z2=(2+i)(-2+i)=-4-1=-5.
故選:A.

點(diǎn)評 本題考查了復(fù)數(shù)的運(yùn)算法則、幾何意義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)$f(x)=|2x-a|+a,a∈R,g(x)=|2x-1|.
(1)若當(dāng)g(x)≤3時(shí),恒有f(x)≤6,求a的最大值;
(2)若不等式f(x)-g(x)≥3有解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知命題P:若△ABC為鈍角三角形,則sinA<cosB;命題q:?x,y∈R,若x+y≠2,則x≠-1或y≠3,則下列命題為真命題的是( 。
A.p∨(?q)B.(?p)∧qC.p∧qD.(?p)∧(?q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.如圖,四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,PA=AB=2,四棱錐P-ABCD的五個(gè)頂點(diǎn)都在一個(gè)球面上,則這個(gè)球的表面積是12π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知當(dāng)x∈R,[x]表示不超過x的最大整數(shù),稱y=[x]為取整函數(shù),例如[1.2]=1,[-2.3]=-3,若f(x)=[x],且偶函數(shù)g(x)=-(x-1)2+1(x≥0),則方程f(f(x))=g(x)的所有解之和為-3-$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若復(fù)數(shù)z滿足$({\sqrt{2}+i})z=3i$(i為虛數(shù)單位),則z的共軛復(fù)數(shù)為( 。
A.$\sqrt{2}+i$B.$\sqrt{2}-i$C.$1+\sqrt{2}i$D.$1-\sqrt{2}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)滿足f($\frac{{x}_{1}+{x}_{2}}{2}$)≥$\frac{f({x}_{1})+f({x}_{2})}{2}$(x1,x2∈D,D為定義域),則稱函數(shù)f(x)為T型函數(shù).下列函數(shù)中是T型函數(shù)的個(gè)數(shù)為( 。
(1)y=2x-1,
(2)y=-x2+2x,
(3)y=$\frac{1}{x}$,
(4)y=3x,
(5)y=log0.5x.
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.①某小區(qū)有4000人,其中少年人、中年人、老年人的比例為1:2:4,為了了解他們的體質(zhì)情況,要從中抽取一個(gè)容量為200的樣本;②從全班45名同學(xué)中選5人參加校委會.
Ⅰ.簡單隨機(jī)抽樣法;Ⅱ.系統(tǒng)抽樣法;Ⅲ.分層抽樣法.
問題與方法配對正確的是(  )
A.①Ⅲ,②ⅠB.①Ⅰ,②ⅡC.①Ⅱ,②ⅢD.①Ⅲ,②Ⅱ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=2sinωx•cosωx$-\sqrt{3}+2\sqrt{3}{sin^2}ωx(ω>0)$的最小正周期為π.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)將函數(shù)f(x)的圖象向左平移$\frac{π}{6}$個(gè)單位,再向下平移1個(gè)單位,得到函數(shù)y=g(x)的圖象,求y=g(x)在區(qū)間[0,20]上零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊答案