16.命題“若a>0,b>0,則ab>0”的逆否命題是真命題(填“真命題”或“假命題”.)

分析 根據(jù)逆否命題的真假關系,判斷原命題的真假即可.

解答 解:若a>0,b>0,則ab>0成立,即原命題為真命題,
則命題的逆否命題也為真命題,
故答案為:真命題.

點評 本題主要考查命題的真假判斷,根據(jù)逆否命題的真假性相同是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

6.若直線x+ay-1=0與2x-4y+3=0垂直,則二項式(ax2-$\frac{1}{x}$)5的展開式中x的系數(shù)為-$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.對于函數(shù)f(x)=asinx+bx3+c(其中,a,b∈R,c∈Z),選取a,b,c的一組值計算f(1)和f(-1),所得出的正確結果一定不可能是( 。
A.4和6B.3和2C.2和4D.3和5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.(I)證明:函數(shù)f(x)=$\frac{1}{x}$(1+x)ln(1+x)在區(qū)間(0,+∞)內為增函數(shù);
(Ⅱ)設a>0,b>0,證明:(1+a+b)ln(1+a+b)>(1+a)ln(1+a)+(1+b)ln(1+b).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知a+b+c=1,且a,b,c是正數(shù),
(1)求證:$\frac{2}{a+b}$+$\frac{2}{b+c}$+$\frac{2}{c+a}$≥9;
(2)若不等式|x-2|≤a2+b2+c2對一切滿足題設條件的正實數(shù)a,b,c恒成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知直線y=kx-1經過拋物線y2=4x的焦點,且與拋物線交于A,B兩點
(1)求k的值.
(2)求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.7+$\sqrt{5}$B.7+2$\sqrt{5}$C.4+2$\sqrt{2}$D.4+$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BCA=45,AP=AD=AC=2,E為PA的中點.
(Ⅰ)設面PAB∩面PCD=l,求證:CD∥l;
(Ⅱ)求二面角B-CE-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知直線y=x+1與函數(shù)f(x)=aex+b的圖象相切,且f′(1)=e.
(I)求實數(shù)a,b的值;
(Ⅱ)若存在x∈(0,$\frac{3}{2}$),使得2mf(x-1)+nf(x)=mx(m≠0)成立,求$\frac{n}{m}$的取值范圍.

查看答案和解析>>

同步練習冊答案