一只昆蟲在邊長分別為5,12,13的三角形區(qū)域內(nèi)隨機爬行,則其到三角形頂點的距離小于2的地方的概率為
 
考點:幾何概型
專題:概率與統(tǒng)計
分析:先求出三角形的面積,再求出據(jù)三角形的三頂點距離小于等于2的區(qū)域為三個扇形,三個扇形的和是半圓,求出半圓的面積,利用幾何概型概率公式求出恰在離三個頂點距離都小于2的地方的概率.
解答: 解:昆蟲活動的范圍是在三角形的內(nèi)部,三角形的邊長為5,12,13,是直角三角形,
∴面積為30,而“恰在離三個頂點距離都小于2”正好是一個半徑為2的半圓,面積為
1
2
π×22=4π×
1
2
=2π
,
∴根據(jù)幾何概型的概率公式可知其到三角形頂點的距離小于2的地方的概率為
30
=
π
15

故答案為:
π
15
;
點評:本題主要考查幾何概型概率公式、三角形的面積公式、圓的面積公式,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

合肥市環(huán)?傉緦2013年11月合肥市空氣質(zhì)量指數(shù)發(fā)布如圖趨勢圖.
AQI指數(shù) 天數(shù)
(60,120]  
(120,180]  
(180,240]  
(240,300]  
(Ⅰ)請根據(jù)如圖所示趨勢圖,完成表并根據(jù)表畫出頻率分布直方圖,
(Ⅱ)試根據(jù)頻率分布直方圖估計合肥市11月份AQI指數(shù)的平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對任意兩個非零的平面向量
α
β
,定義
α
o
β
=
α
β
β
β
,若平面向量
a
、
b
滿足|
a
|≥|
b
|>0,
a
b
的夾角θ∈[0,
π
4
],且
a
o
b
b
o
a
都在集合{
n
m
|m∈Z,n∈Z}中.給出下列命題:
①若m=1時,則
a
o
b
=
b
o
a
=1.
②若m=2時,則
a
o
b
=
1
2

③若m=3時,則
a
o
b
的取值個數(shù)最多為7.
④若m=2014時,則
a
o
b
的取值個數(shù)最多為
20142
2

其中正確的命題序號是
 
(把所有正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別為角A,B,C的對邊,且角A=60°,若S△ABC=
15
3
4
,且5sinB=3sinC,則ABC的周長等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合A={(x,y)|xy=2且x+y=3,x∈R,y∈R}的所有子集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀如圖的程序框圖,執(zhí)行相應(yīng)的程序,則輸出k的結(jié)果是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由數(shù)字1,2,3,4組成的五位數(shù)
.
a1a2a3a4a5
中,任意取出一個,滿足條件;“對任意的正整數(shù)j(1≤j≤5),至少存在另一個正整數(shù)k(1≤k≤5,且k≠j),使得aj=ak”的概率為(  )
A、
1
256
B、
31
256
C、
15
64
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x+x,g(x)=log3x+x,h(x)=x-
1
x
的零點依次為a,b,c,則(  )
A、a<b<c
B、c<b<a
C、c<a<b
D、b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

山東省第二十三屆運動會將于2014年9月16日在濟寧市開幕,為辦好省運會,濟寧市計劃招募各類志愿者1.2萬人.為做好宣傳工作,招募小組對濟寧市15-40歲的人群隨機抽取了100人,回答“省運會”的有關(guān)知識,根據(jù)統(tǒng)計結(jié)果制作了如下的統(tǒng)計圖及表:
組號 按年齡分組 回答完全正確人數(shù) 回答完全正確人數(shù)占本組頻率
1 [15,20) 5 0.5
2 [20,25) a 0.9
3 [25,30) 27 x
4 [30,35) 9 0.36
5 [35,40) 3 0.2
(Ⅰ)分別求出表2中的a、x的值;
(Ⅱ)若在第2、3、4組回答完全正確的人中,用分層抽樣的方法抽取6人,則各組應(yīng)分別抽取多少人?
(Ⅲ)在(II)的前提下,招募小組決定在所抽取的6人中,隨機抽取2人頒發(fā)幸運獎,求獲獎的2人均來自第3組的概率.

查看答案和解析>>

同步練習(xí)冊答案