精英家教網(wǎng)如圖,已知正方形ABCD的邊長為1,F(xiàn)D⊥平面ABCD,EB⊥平面ABCD,F(xiàn)D=BE=1,M為BC邊上的動點.
(1)證明:ME∥平面FAD;
(2)試探究點M的位置,使平面AME⊥平面AEF.
分析:(1)由FD∥EB,AD∥BC,證明平面FAD∥平面EBC,從而證明 ME∥平面FAD.
(2)建立空間直角坐標(biāo)D-xyz,設(shè)M(λ,1,0),求出平面AEF的法向量為
n1
 的坐標(biāo),平面AME的法向量為
n2
 的坐標(biāo),由
n1
n2
=0,可得λ值,從而確定M在線段BC上的位置.
解答:解:(1)∵FD⊥平面ABCD,EB⊥平面ABCD,∴FD∥EB,又 AD∥BC且AD∩FD=D,BC∩BE=B,
∴平面FAD∥平面EBC,ME?平面EBC,∴ME∥平面FAD.
(2)以D為坐標(biāo)原點,分別以DA、DC、DF所在直線為x、y、z軸,建立空間直角坐標(biāo)D-xyz,
依題意,得D(0,0,0),A(1,0,0),F(xiàn)(0,0,1),C(0,1,0),B(1,1,0),E(1,1,1),
設(shè)M(λ,1,0),平面AEF的法向量為
n1
=(x1,y1,z1),平面AME的法向量為
n2
=(x2,y2,z2),
AE
=(0,1,1),
AF
=(-1,0,1),∴
n1
AE
=0
n1
AF
=0
,∴
y1+z1=0
z1-x1=0

取z1=1,得x1=1,y1=-1,∴
n1
=(1,-1,0). 又
AM
=(λ-1,1,0),
AE
=(0,1,1),
n2
AE
=0
n2
AM
=0
,∴
y2+z2=0
x2(λ-1)+y2=0
,取x2=1得y2=1-λ,z2=λ-1,∴
n2
=(1,1-λ,λ-1),
若平面AME⊥平面AEF,則
n1
n2
,∴
n1
n2
=0,∴1-(1-λ)+(λ-1)=0,解得λ=
1
2

此時M為BC的中點.所以當(dāng)M在BC的中點時,AME⊥平面AEF.
點評:本題考查證明先面平行的方法,以及利用兩個平面的法向量垂直來證明兩個平面垂直,求出兩個平面的法向量是解題的
關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=
2
,AF=1,M是線段EF的中點.
(Ⅰ)求證AM∥平面BDE;
(Ⅱ)求二面角A-DF-B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知正方形ABCD的邊長為1,過正方形中心O的直線MN分別交正方形的邊AB,CD于M,N,則當(dāng)
MN
BN
最小時,CN=
5
-1
2
5
-1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知正方形ABCD和梯形ACEF所在平面互相垂直,AB=2,AF=
2
,CE=2
2
,CE∥AF,AC⊥CE,
ME
=2
FM

(I)求證:CM∥平面BDF;
(II)求異面直線CM與FD所成角的余弦值的大;
(III)求二面角A-DF-B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=
2
,AF=1

(1)求二面角A-DF-B的大;
(2)在線段AC上找一點P,使PF與AD所成的角為60°,試確定點P的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳二模)如圖,已知正方形ABCD在水平面上的正投影(投影線垂直于投影面)是四邊形A′B′C′D′,其中A與A'重合,且BB′<DD′<CC′.
(1)證明AD′∥平面BB′C′C,并指出四邊形AB′C′D′的形狀;
(2)如果四邊形中AB′C′D′中,AD′=
2
,AB′=
5
,正方形的邊長為
6
,求平面ABCD與平面AB′C′D′所成的銳二面角θ的余弦值.

查看答案和解析>>

同步練習(xí)冊答案