已知函數(shù)f(x)=-log2x,正實數(shù)a,b,c是公差為正數(shù)的等差數(shù)列,且滿足f(a)f(b)f(c)<0.若實數(shù)d是方程f(x)=0的一個解,那么下列四個判斷:①d<a;②d<b;③d<c;④d>c中有可能成立的個數(shù)為( )
A.1
B.2
C.3
D.4
【答案】分析:分情況討論,若f(a),f(b)>0和f(a),f(b),f(c)<0兩種情況,根據(jù)函數(shù)f(x)的單調(diào)性可推斷a,b,c,d的大。
解答:解:f(x)在(0,+∞)上單調(diào)減,值域為R又a<b<c,f(a)f(b)f(c)<0,所以(1)若f(a),f(b)>0,f(c)<0.由f(d)=0知,a<b<d<c,③成立;(2)若f(a),f(b),f(c)<0.此時d<a<b<c,①②③成立.綜上,可能成立的個數(shù)為3.
點評:函數(shù)的單調(diào)性和等差數(shù)列的綜合運用.屬基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線x=
π
6
對稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當x>0時,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時f(x)的表達式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項和為Sn,則S2010的值為( 。
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習冊答案