【題目】中國鐵路總公司相關(guān)負(fù)責(zé)人表示,到2018年底,全國鐵路營業(yè)里程達(dá)到13.1萬公里,其中高鐵營業(yè)里程2.9萬公里,超過世界高鐵總里程的三分之二,下圖是2014年到2018年鐵路和高鐵運(yùn)營里程(單位:萬公里)的折線圖,以下結(jié)論不正確的是( )

A.每相鄰兩年相比較,2014年到2015年鐵路運(yùn)營里程增加最顯著

B.從2014年到2018年這5年,高鐵運(yùn)營里程與年價(jià)正相關(guān)

C.2018年高鐵運(yùn)營里程比2014年高鐵運(yùn)營里程增長80%以上

D.從2014年到2018年這5年,高鐵運(yùn)營里程數(shù)依次成等差數(shù)列

【答案】D

【解析】

由折線圖逐項(xiàng)分析即可求解

選項(xiàng),顯然正確;

對于,,選項(xiàng)正確;

1.6,1.9,2.2,2.5,2.9不是等差數(shù)列,故錯(cuò).

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定橢圓,稱圓心在原點(diǎn),半徑為的圓是橢圓的“伴橢圓”,若橢圓的一個(gè)焦點(diǎn)為,其短軸上一個(gè)端點(diǎn)到的距離為.

(1)求橢圓的方程;

(2)過點(diǎn)作橢圓的“伴隨圓”的動(dòng)弦,過點(diǎn)分別作“伴隨圓”的切線,設(shè)兩切線交于點(diǎn),證明:點(diǎn)的軌跡是直線,并寫出該直線的方程;

(3)設(shè)點(diǎn)是橢圓的“伴隨圓”上的一個(gè)動(dòng)點(diǎn),過點(diǎn)作橢圓的切線、,試判斷直線、是否垂直?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱柱中,,側(cè)面底面,的中點(diǎn),.

(Ⅰ)求證:為直角三角形;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)的值域?yàn)?/span>,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《最強(qiáng)大腦》是大型科學(xué)競技類真人秀節(jié)目,是專注傳播腦科學(xué)知識和腦力競技的節(jié)目.某機(jī)構(gòu)為了了解大學(xué)生喜歡《最強(qiáng)大腦》是否與性別有關(guān),對某校的100名大學(xué)生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:

喜歡《最強(qiáng)大腦》

不喜歡《最強(qiáng)大腦》

合計(jì)

男生

15

女生

15

合計(jì)

已知在這100人中隨機(jī)抽取1人抽到不喜歡《最強(qiáng)大腦》的大學(xué)生的概率為0.4

(I)請將上述列聯(lián)表補(bǔ)充完整;判斷是否有99.9%的把握認(rèn)為喜歡《最強(qiáng)大腦》與性別有關(guān),并說明理由;

(II)已知在被調(diào)查的大學(xué)生中有5名是大一學(xué)生,其中3名喜歡《最強(qiáng)大腦》,現(xiàn)從這5名大一學(xué)生中隨機(jī)抽取2人,抽到喜歡《最強(qiáng)大腦》的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.

參考公式:,

參考數(shù)據(jù):,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,,,點(diǎn)是邊上一點(diǎn),且,點(diǎn)的中點(diǎn),將沿著折起,使點(diǎn)運(yùn)動(dòng)到點(diǎn)處,且滿足.

1)證明:平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,兩種坐標(biāo)系取相同的單位長度.已知曲線,過點(diǎn)的直線的參數(shù)方程為.直線與曲線分別交于

(1)求的取值范圍;

(2)若、成等比數(shù)列,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列的前項(xiàng)13,7,)組成集合,從集合中任取)個(gè)數(shù),其所有可能的個(gè)數(shù)的乘積的和為(若只取一個(gè)數(shù),規(guī)定乘積為此數(shù)本身),記.例如:當(dāng)時(shí),,;時(shí),,.

1)當(dāng)時(shí),求,,的值;

2)證明:時(shí)集合時(shí)集合(為以示區(qū)別,用表示)有關(guān)系式);

3)試求(用表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】曲線的右焦點(diǎn)分別為,短袖長為,點(diǎn)在曲線上,直線上,且.

1)求曲線的標(biāo)準(zhǔn)方程;

2)試通過計(jì)算判斷直線與曲線公共點(diǎn)的個(gè)數(shù).

3)若點(diǎn)在都在以線段為直徑的圓上,且,試求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案