關于x的二次方程x2+(m-1)x+1=0在區(qū)間[0,2]上有解,求實數(shù)m的取值范圍.

m≤-1


解析:

設f(x)=x2+(m-1)x+1,x∈[0,2],

①若f(x)=0在區(qū)間[0,2]上有一解,

∵f(0)=1>0,則應有f(2)≤0,

又∵f(2)=22+(m-1)×2+1,∴m≤-.

②若f(x)=0在區(qū)間[0,2]上有兩解,則

 

由①②可知m≤-1.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設關于x的二次方程x2+(m-1)x+1=0在區(qū)間[0,2]上有兩不同解,則實數(shù)m的取值范圍是
[-
3
2
,-1)
,
[-
3
2
,-1)
,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關于x的二次方程x2+2mx+2m+1=0.
(Ⅰ)若方程有兩根,其中一根在區(qū)間(-1,0)內(nèi),另一根在區(qū)間(1,2)內(nèi),求m 的取值范圍.
(Ⅱ)若方程兩根均在區(qū)間(0,1)內(nèi),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知條件p:“函數(shù)g(x)=logm(x-1)為減函數(shù);條件q:關于x的二次方程
x
2
 
-2x+m=0
有解,則p是q的( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關于x的二次方程x2+2mx+2m+1=0有一正一負根,則m∈
(-∞,-
1
2
(-∞,-
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在區(qū)間[-1,1]上任取兩數(shù)a、b,則使關于x的二次方程x2+2
a2+b2
x+1=0
的兩根都是實數(shù)的概率為( 。
A、
π-2
2
B、
π
4
C、
4-π
4
D、
1
2

查看答案和解析>>

同步練習冊答案