以正方體的任意4個(gè)頂點(diǎn)為頂點(diǎn)的幾何形體有             
①空間四邊形;
②每個(gè)面都是等邊三角形的四面體;
③最多三個(gè)面是直角三角形的四面體;
④有三個(gè)面為等腰直角三角形,有一個(gè)面為等邊三角形的四面體.
①②④

試題分析:①只要不在同一平面上的四個(gè)點(diǎn)連結(jié)而成的四邊形都是空間四邊形. ②從一個(gè)頂點(diǎn)出發(fā)與它的三個(gè)對(duì)角面的頂點(diǎn)連結(jié)所成的四棱錐符合條件.最多有四個(gè)直角四面體.由一個(gè)頂點(diǎn)和又該點(diǎn)出發(fā)的兩條棱的端點(diǎn)及一個(gè)對(duì)角面的定點(diǎn)四點(diǎn)即可.所以③不成立. ④顯然成立.故選①②④.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,圓柱的高為2,底面半徑為,AE、DF是圓柱的兩條母線,過(guò)作圓柱的截面交下底面于,四邊形ABCD是正方形.

(Ⅰ)求證
(Ⅱ)求四棱錐E-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知四棱錐平面,底面為直角梯形,,且,.

(1)點(diǎn)在線段上運(yùn)動(dòng),且設(shè),問(wèn)當(dāng)為何值時(shí),平面,并證明你的結(jié)論;
(2)當(dāng),且求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

一個(gè)棱柱至少有  _____個(gè)面,面數(shù)最少的一個(gè)棱錐有   ________個(gè)頂點(diǎn)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖所示,直觀圖四邊形是一個(gè)底角為45°,腰和上底均為1的等腰梯形,那么原平面圖形的面積是(    )
 
A. B.
C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)正方體的棱長(zhǎng)為,則它的外接球的表面積為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知正方體的體對(duì)角線為,點(diǎn)在題對(duì)角線上運(yùn)動(dòng)(動(dòng)點(diǎn)不與體對(duì)角線的端點(diǎn)重合)現(xiàn)以點(diǎn)為球心,為半徑作一個(gè)球,設(shè),記該球面與正方體表面積的交線長(zhǎng)度和為,則函數(shù)的圖象最有可能是(   )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知三棱錐A-BCD中,平面ABD⊥平面BCD,BC⊥CD,BC=CD=4,AB=AD=,則三棱錐A-BCD的外接球的大圓面積為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在多面體ABCDEF中,已知面ABCD是邊長(zhǎng)為3的正方形,EF//AB,EF=,EF與面AC的距離為2,則該多面體的體積為_(kāi)___________.

查看答案和解析>>

同步練習(xí)冊(cè)答案