設(shè)直線的方程為,根據(jù)下列條件分別確定實數(shù)的值.

(1)軸上的截距為;

(2)斜率為

(1)

(2)


解析:

(1)令,依題意得,

由①得,

由②得,

解得

綜上所述,

(2)由題意得,

由③得,

由④得,

解得

綜上所述,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:044

設(shè)直線l的方程為,根據(jù)下列條件分別確定m的值:

(1)直線lx軸上的截距是-3;

(2)直線l的斜率是1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年蘇教版高中數(shù)學(xué)必修2 2.1直線與方程練習(xí)卷(解析版) 題型:解答題

設(shè)直線的方程為,根據(jù)下列條件求的值.

(1)直線的斜率為1;。ǎ玻┲本經(jīng)過定點

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)直線的方程為,根據(jù)下列條件分別確定m的值.

(1) x軸上的截距是;

(2) 的斜率是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(課標(biāo)卷解析版) 題型:解答題

設(shè)拋物線>0)的焦點為,準(zhǔn)線為上一點,已知以為圓心,為半徑的圓,兩點.

(Ⅰ)若,的面積為,求的值及圓的方程;

 (Ⅱ)若,三點在同一條直線上,直線平行,且只有一個公共點,求坐標(biāo)原點到,距離的比值.

【命題意圖】本題主要考查圓的方程、拋物線的定義、直線與拋物線的位置關(guān)系、點到直線距離公式、線線平行等基礎(chǔ)知識,考查數(shù)形結(jié)合思想和運算求解能力.

【解析】設(shè)準(zhǔn)線軸的焦點為E,圓F的半徑為

則|FE|=,=,E是BD的中點,

(Ⅰ) ∵,∴=,|BD|=,

設(shè)A(),根據(jù)拋物線定義得,|FA|=

的面積為,∴===,解得=2,

∴F(0,1),  FA|=,  ∴圓F的方程為:;

(Ⅱ) 解析1∵,三點在同一條直線上, ∴是圓的直徑,,

由拋物線定義知,∴,∴的斜率為或-,

∴直線的方程為:,∴原點到直線的距離=

設(shè)直線的方程為:,代入得,

只有一個公共點, ∴=,∴,

∴直線的方程為:,∴原點到直線的距離=,

∴坐標(biāo)原點到距離的比值為3.

解析2由對稱性設(shè),則

      點關(guān)于點對稱得:

     得:,直線

     切點

     直線

坐標(biāo)原點到距離的比值為

 

查看答案和解析>>

同步練習(xí)冊答案