拋擲甲、乙兩顆骰子,若事件A:“甲骰子的點數(shù)大于4”;事件B:“甲、乙兩骰子的點數(shù)之和等于7”,則的值等于 (    )
A.B.C.D.
C

試題分析:拋擲甲、乙兩顆骰子,若事件A:“甲骰子的點數(shù)大于4”; 所有情況有12種,事件B:“甲、乙兩骰子的點數(shù)之和等于7”,7=5+2=6+1有兩種,可知其概率值為2:12=,故選C.
點評:本題考查條件概率,條件概率有兩種做法,本題采用概率來解,還有一種做法是用事件發(fā)生所包含的事件數(shù)之比來解出結(jié)果,本題出現(xiàn)的不多,以這個題目為例,同學們要認真分析
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:填空題

隨機變量ξ的分布列分布例如表
ξ
0
1
2
P
0.2
0.6
0.2
則Dξ=_______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

為了解某班學生關(guān)注NBA是否與性別有關(guān),對本班48人進行了問卷調(diào)查得到如下的列聯(lián)表:
 
關(guān)注NBA
不關(guān)注NBA
合  計
男   生
 
6
 
女   生
10
 
 
合   計
 
 
48
已知在全班48人中隨機抽取1人,抽到關(guān)注NBA的學生的概率為2/3
⑴請將上面列連表補充完整,并判斷是否有的把握認為關(guān)注NBA與性別有關(guān)?
⑵現(xiàn)從女生中抽取2人進一步調(diào)查,設(shè)其中關(guān)注NBA的女生人數(shù)為X,求X的分布列與數(shù)學期望。
附:,其中

0.15
0.10
0.05
0.025
0.010

2.072
2.706
3.841
5.024
6.635

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

甲乙兩隊進行排球比賽,已知每一局比賽中甲隊獲勝的概率是,沒有平局.采用三局兩勝制比賽,即先勝兩局者獲勝且比賽結(jié)束,則甲隊獲勝的概率等于( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

工商部門對甲、乙兩家食品加工企業(yè)的產(chǎn)品進行深入檢查后,決定對甲企業(yè)的5種產(chǎn)品和乙企業(yè)的3種產(chǎn)品做進一步的檢驗.檢驗員從以上8種產(chǎn)品中每次抽取一種逐一不重復地進行化驗檢驗.
(1)求前3次檢驗的產(chǎn)品中至少1種是乙企業(yè)的產(chǎn)品的概率;
(2)記檢驗到第一種甲企業(yè)的產(chǎn)品時所檢驗的產(chǎn)品種數(shù)共為X,求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

兩個實習生每人加工一個零件,加工為一等品的概率分別為,兩個零件是否加工為一等品相互獨立,則這兩個零件中恰好有一個一等品的概率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某學生在上學路上要經(jīng)過4個路口,假設(shè)在各路口是否遇到紅燈是相互獨立的,遇到紅燈的概率都是,遇到紅燈時停留的時間都是2 分鐘. 設(shè)這名學生在路上遇到紅燈的個數(shù)為變量、停留的總時間為變量,
(1)求這名學生在上學路上到第三個路口時首次遇到紅燈的概率;
(2)這名學生在上學路上遇到紅燈的個數(shù)至多是2個的概率.
(3)求的標準差

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

某品牌產(chǎn)品,在男士中有10%使用過,女士中有40%的人使用過,若從男女人數(shù)相等的人群中任取一人,恰好使用過該產(chǎn)品,則此人是位女士的概率是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

從分別寫有的5張卡片中任取2張,這2張卡片上的字母恰好是按字母順序相鄰的概率是         

查看答案和解析>>

同步練習冊答案