已知點(diǎn)和曲線,過(guò)點(diǎn)A的任意直線都與曲線至少有一個(gè)交點(diǎn),則實(shí)數(shù)取值范圍

 

【答案】

【解析】

試題分析:把曲線方程化為:,知它是以為圓心,為半徑的圓.如圖所示,

點(diǎn)在直線上,任意過(guò)的直線與圓有交點(diǎn),則

考點(diǎn):直線和圓的位置關(guān)系.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(
3
,-1)
,
b
=(
1
2
3
2
)

(Ⅰ)若存在實(shí)數(shù)k和t,使
x
=
a
+(t2-3)
b
,
y
=-k
a
+t
b
,且
x
y
,試求函數(shù)關(guān)系式k=f(t);
(Ⅱ)根據(jù)(Ⅰ)的結(jié)論,確定k=f(t)的單調(diào)區(qū)間;
(Ⅲ)設(shè)a>0,若過(guò)點(diǎn)(a,b)可作曲線k=f(t)的三條切線,求證:-
3
4
a<b<f(a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•黃浦區(qū)一模)已知兩點(diǎn)A(-1,0)、B(1,0),點(diǎn)P(x,y)是直角坐標(biāo)平面上的動(dòng)點(diǎn),若將點(diǎn)P的橫坐標(biāo)保持不變、縱坐標(biāo)擴(kuò)大到
2
倍后得到點(diǎn)Q(x,
2
y
)滿足
AQ
BQ
=1

(1)求動(dòng)點(diǎn)P所在曲線C的軌跡方程;
(2)過(guò)點(diǎn)B作斜率為-
2
2
的直線l交曲線C于M、N兩點(diǎn),且滿足
OM
+
ON
+
OH
=
0
,又點(diǎn)H關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)為點(diǎn)G,試問(wèn)四點(diǎn)M、G、N、H是否共圓,若共圓,求出圓心坐標(biāo)和半徑;若不共圓,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分) 已知兩點(diǎn)分別在直線上運(yùn)動(dòng),且,動(dòng)點(diǎn)滿足: (為坐標(biāo)原點(diǎn)),點(diǎn)的軌跡記為曲線. (Ⅰ)求曲線的方程,并討論曲線的類型; (Ⅱ)過(guò)點(diǎn)作直線與曲線交于不同的兩點(diǎn)、,若對(duì)于任意,都有為銳角,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖北省八校高三第二次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓,拋物線的焦點(diǎn)均在軸上,的中心和的頂點(diǎn)均為原點(diǎn),每條曲線上取兩個(gè)點(diǎn),將其坐標(biāo)記錄于表中:

(1)求的標(biāo)準(zhǔn)方程;

(2)設(shè)斜率不為0的動(dòng)直線有且只有一個(gè)公共點(diǎn),且與的準(zhǔn)線交于,試探究:在坐標(biāo)平面內(nèi)是否存在定點(diǎn),使得以為直徑的圓恒過(guò)點(diǎn)?若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案