【題目】從拋物線C)外一點作該拋物線的兩條切線PAPB(切點分別為A、B),分別與x軸相交于C、D,若ABy軸相交于點Q,點在拋物線C上,且F為拋物線的焦點).

1)求拋物線C的方程;

2)①求證:四邊形是平行四邊形.

②四邊形能否為矩形?若能,求出點Q的坐標;若不能,請說明理由.

【答案】1;(2)①證明見解析;②能,.

【解析】

1)根據(jù)拋物線的定義,求出,即可求拋物線C的方程;

2)①設,,寫出切線的方程,解方程組求出點的坐標. 設點,直線AB的方程,代入拋物線方程,利用韋達定理得到點的坐標,寫出點的坐標,,可得線段相互平分,即證四邊形是平行四邊形;②若四邊形為矩形,則,求出,即得點Q的坐標.

1)因為,所以,即拋物線C的方程是.

2)①證明:由,.,

則直線PA的方程為(。,

則直線PB的方程為(ⅱ),

由(。┖停áⅲ┙獾茫,所以.

設點,則直線AB的方程為.

,則,

所以,所以線段PQx軸平分,即被線段CD平分.

在①中,令解得,所以,同理得,所以線段CD的中點坐標為,即,又因為直線PQ的方程為,所以線段CD的中點在直線PQ上,即線段CD被線段PQ平分.

因此,四邊形是平行四邊形.

②由①知,四邊形是平行四邊形.

若四邊形是矩形,則,即

,

解得,故當點Q,即為拋物線的焦點時,四邊形是矩形.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若,求出函數(shù)的單調區(qū)間及最大值;

2)若,求函數(shù)上的最大值的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線l的參數(shù)方程為m為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為,直線與曲線C交于M,N兩點.

(1)求直線l的普通方程和曲線C的直角坐標方程;

(2)求|MN|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線是曲線的切線.

1)求函數(shù)的解析式,

2)若,證明:對于任意,有且僅有一個零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中, , 平面平面, 、分別為、中點.

1)求證: ;

2)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年,國家逐步推行全新的高考制度.新高考不再分文理科,某省采用模式,其中語文、數(shù)學、外語三科為必考科目,每門科目滿分均為.另外考生還要依據(jù)想考取的高校及專業(yè)的要求,結合自己的興趣愛好等因素,在思想政治、歷史、地理、物理、化學、生物門科目中自選門參加考試(),每門科目滿分均為.為了應對新高考,某高中從高一年級名學生(其中男生人,女生人)中,采用分層抽樣的方法從中抽取名學生進行調查,其中,女生抽取.

1)求的值;

2)學校計劃在高一上學期開設選修中的物理地理兩個科目,為了了解學生對這兩個科目的選課情況,對抽取到的名學生進行問卷調查(假定每名學生在物理地理這兩個科目中必須選擇一個科目且只能選擇一個科目),下表是根據(jù)調查結果得到的一個不完整的列聯(lián)表,請將下面的列聯(lián)表補充完整,并判斷是否有的把握認為選擇科目與性別有關?說明你的理由;

選擇物理

選擇地理

總計

男生

女生

總計

3)在抽取到的名女生中,按(2)中的選課情況進行分層抽樣,從中抽出名女生,再從這名女生中抽取人,設這人中選擇物理的人數(shù)為,求的分布列及期望.附:,

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列結論中正確的個數(shù)是( ).

①在中,若,則是等腰三角形;

②在中,若 ,則

③兩個向量,共線的充要條件是存在實數(shù),使

④等差數(shù)列的前項和公式是常數(shù)項為0的二次函數(shù).

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知平面直角坐標系,以為極點, 軸的非負半軸為極軸建立極坐標系, 點的極坐標為,曲線的參數(shù)方程為為參數(shù)).

(1)寫出點的直角坐標及曲線的直角坐標方程;

(2)若為曲線上的動點,求的中點到直線 的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,直線l的參數(shù)方程為(其中t為參數(shù)).以坐標原點O為極點,x軸非負半軸為極軸建立極坐標系,曲線C的極坐標方程為

(1)求lC的直角坐標方程.

(2)設點,直線l交曲線CA,B兩點,求的值.

查看答案和解析>>

同步練習冊答案