已知函數(shù)f(x)=lnx-ax+a(a∈R,x>0)
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若f(x)≤0在x∈(0,+∞)上恒成立.
(i) 求a的取值范圍;
(ii) 設(shè)n為給定不小于4的正整數(shù),當(dāng)m>n時(shí),求證:
n
k=1
f(m)-f(k)
m-k
<-
n
n+1
分析:(Ⅰ)求出函數(shù)f(x)=lnx-ax(a∈R)的導(dǎo)數(shù),令導(dǎo)數(shù)大于0求出函數(shù)的增區(qū)間,令導(dǎo)數(shù)小于0,求出函數(shù)的減區(qū)間.
(Ⅱ)(i)由f(x)=lnx-ax+a,知f′(x)=
1
x
-a,取f′(x)=
1
x
-a=0,則ln(
1
a
)-1<0,由此能求出a的取值范圍.
(ii)由m>n≥4,a>
1
e
,f(x)=lnx-ax+a(a∈R,x>0),知m-k>0,f(m)-f(k)=lnm-am+lnk-ak=ln
m
k
-a(m+k),由此能夠證明
n
k=1
f(m)-f(k)
m-k
<-
n
n+1
解答:解:(Ⅰ)函數(shù)的定義域是(0,+∞)
∵f(x)=lnx-ax+a,∴f′(x)=
1
x
-a,
當(dāng)a≤0時(shí),f′(x)>0,函數(shù)在定義域上是增函數(shù);
當(dāng)a>0時(shí),令f′(x)=0,解得x=
1
a
,
當(dāng)x>
1
a
時(shí),f′(x)<0,函數(shù)在(
1
a
,+∞)上是減函數(shù),
當(dāng)x<
1
a
時(shí),導(dǎo)數(shù)為正,函數(shù)在(0,
1
a
)上是增函數(shù)
(Ⅱ)(i)∵f(x)=lnx-ax+a,∴f′(x)=
1
x
-a,
取f′(x)=
1
x
-a=0,則x=
1
a
,∴l(xiāng)n(
1
a
)-1<0,即
1
a
<e,所以a>
1
e

(ii)∵m>n≥4,a>
1
e
,f(x)=lnx-ax+a(a∈R,x>0)
∴m-k>0,f(m)-f(k)=lnm-am-lnk+ak=ln
m
k
-a(m-k),
f(m)-f(k)
m-k
=
lnm-lnk
m-k
-a

n
k=1
f(m)-f(k)
m-k
<-
n
n+1
點(diǎn)評(píng):本題考查用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,解題的鍵是理解并掌握函數(shù)的導(dǎo)數(shù)的符號(hào)與函數(shù)的單調(diào)性的關(guān)系,此類(lèi)題一般有兩類(lèi)題型,一類(lèi)是利用導(dǎo)數(shù)符號(hào)得出單調(diào)性,一類(lèi)是由單調(diào)性得出導(dǎo)數(shù)的符號(hào),本題屬于第一種類(lèi)型.本題的第二小問(wèn)是根據(jù)函數(shù)在閉區(qū)間上的最值,本題中由于參數(shù)的存在,導(dǎo)致導(dǎo)數(shù)的符號(hào)不定,故需要對(duì)參數(shù)的取值范圍進(jìn)行討論,以確定函數(shù)在這個(gè)區(qū)間上的最值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)平行于x軸,求a的值;
(2)當(dāng)a=1時(shí),若直線(xiàn)l:y=kx-2與曲線(xiàn)y=f(x)在(-∞,0)上有公共點(diǎn),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對(duì)任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對(duì)于函數(shù)f(x)圖象上的不同兩點(diǎn)A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點(diǎn)M(x0,y0)(其中x0∈(x1,x2))使得點(diǎn)M處的切線(xiàn)l∥AB,則稱(chēng)直線(xiàn)AB存在“伴侶切線(xiàn)”.特別地,當(dāng)x0=
x1+x2
2
時(shí),又稱(chēng)直線(xiàn)AB存在“中值伴侶切線(xiàn)”.試問(wèn):當(dāng)x≥e時(shí),對(duì)于函數(shù)f(x)圖象上不同兩點(diǎn)A、B,直線(xiàn)AB是否存在“中值伴侶切線(xiàn)”?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線(xiàn)l與直線(xiàn)x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項(xiàng)和為Sn,則S2012的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點(diǎn);
(Ⅱ)若直線(xiàn)l過(guò)點(diǎn)(0,-1),并且與曲線(xiàn)y=f(x)相切,求直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實(shí)數(shù)a的不同取值,寫(xiě)出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當(dāng)x>0時(shí),函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫(xiě)出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線(xiàn)C,試問(wèn)是否存在經(jīng)過(guò)原點(diǎn)的直線(xiàn)l,使得l為曲線(xiàn)C的對(duì)稱(chēng)軸?若存在,求出直線(xiàn)l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案