已知集合M={x|
x+1
≥0}
,集合N={x|x-1<0},則M∩N=(  )
A、f(x)=ln|x-1|
B、{x|x<1}
C、{x|-1<x<1}
D、{x|-1≤x<1}
考點:交集及其運算
專題:集合
分析:求出M中x的范圍確定出M,求出N中不等式的解集確定出N,求出兩集合的交集即可.
解答: 解:由M中
x+1
≥0,得到x+1≥0,即x≥-1,
∴M={x|x≥-1},
由N中x-1<0,解得:x<1,
∴N={x|x<1},
則M∩N={x|-1≤x<1},
故選:D.
點評:此題考查了交集及其運算,熟練掌握交集的定義是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}滿足a3=5,a8=-5
(Ⅰ)求{an}的通項公式;
(Ⅱ)求{an}的前n項和Sn及使得Sn最大的序號n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
.
AB
=(5,-3),C(-1,3),
.
CD
=2
.
AB
,則點D的坐標為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知全集U={1,2,3,4,5,6},A={2,3,6},則∁UA=( 。
A、{1,4,5}
B、{2,3,6}
C、{1,4,6}
D、{4,5,6}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
x+1
+
3-x
+
1
2-x
的定義域為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

巳知各項均為正數(shù)的等差數(shù)列{an}前三項的和為27,且滿足a1a3=65.數(shù)列{bn}的前n項和為Sn,且對一切正整數(shù)n,點(n,Sn)都在函數(shù)f(x)=
3x+1
2
-
3
2
的圖象上.
(Ⅰ) 求數(shù)列{an}和{bn}的通項公式;
(Ⅱ)設cn =anbn,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的公差為d,a3=10,a6=22
(1)求數(shù)列{an}的通項公式;
(2)若a1,a2-m,a3-m構成公比為正數(shù)q的等比數(shù)列{bn}的前3項,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

大座鐘的鐘擺每2秒完成一次完整的擺動,鐘擺與它的靜止位置所成的最大角為10°,若鐘擺與它的靜止位置所成的角θ按簡諧振動的方式改變,則角θ(單位:度)與時間t(單位:秒)之間的函數(shù)關系為
 
(當鐘擺處于豎直位置時開始計時)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
1
tan2x-2tanx+2
的值域是( 。
A、(-∞,1]
B、(0,1]
C、[1,+∞)
D、[
1
2
,1]

查看答案和解析>>

同步練習冊答案