【題目】給出下列四個(gè)命題:
①已知M={(x,y)| =3},N={(x,y)|ax+2y+a=0}且M∩N=,則a=﹣6;
②已知點(diǎn)A(x1 , y1),B(x2 , y2),則以AB為直徑的圓的方程是(x﹣x1)(x﹣x2)+(y﹣y1)(y﹣y2)=0;
=1(a≠b)表示焦點(diǎn)在x軸上的橢圓;
④已知拋物線y2=2px(p>0)的焦點(diǎn)弦AB的兩端點(diǎn)坐標(biāo)分別為A(x1 , y2),B(x2 , y2),則 =﹣4
其中的真命題是 . (把你認(rèn)為是真命題的序號(hào)都填上)

【答案】②④
【解析】解:對(duì)于 ①, =3中x≠2,不過點(diǎn)(2,3),把點(diǎn)(2,3)代入ax+2y+a=0,a=﹣2,故錯(cuò);
對(duì)于②,設(shè)圓上任意一點(diǎn)P(x,y),有 ,可得圓的方程(x﹣x1)(x﹣x2)+(y﹣y1)(y﹣y2)=0,故正確;
對(duì)于③,a≠b時(shí),橢圓焦點(diǎn)在x、y軸上均可能,還有可能是橢圓,故錯(cuò);
對(duì)于④,設(shè)直線AB的方程為x=my+ 代入y2=2px,可得y2﹣2pmy﹣p2=0,由韋達(dá)定理得,y1y2=﹣p2 . ∵y12=2px1、y22=2px2∴,x1x2= p2
=﹣4,故正確.
故答案:②④
【考點(diǎn)精析】認(rèn)真審題,首先需要了解命題的真假判斷與應(yīng)用(兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|x|x+bx+c,給出下列4個(gè)命題:
①b=0,c>0時(shí),方程f(x)=0只有一個(gè)實(shí)數(shù)根;
②c=0時(shí),y=f(x)是奇函數(shù);
③y=f(x)的圖象關(guān)于點(diǎn)(0,c)對(duì)稱;
④方程f(x)=0至多有2個(gè)不相等的實(shí)數(shù)根.
上述命題中的所有正確命題的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U為R,集合A={x|0<x≤2},B={x|x<﹣3,或x>1}
求:(I)A∩B;
(II)(CUA)∩(CUB);
(III)CU(A∪B).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列{an}中,已知a1=1,a2=2,an+2= (k∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求滿足2an+1=an+an+2的正整數(shù)n的值;
(3)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 問是否存在正整數(shù)m,n,使得S2n=mS2n1?若存在,求出所有的正整數(shù)對(duì)(m,n);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)非空集合s={x|m≤x≤l}滿足:當(dāng)x∈S時(shí),有y=x2∈S.給出如下三個(gè)命題:
①若m=1,則S={1};
②若m=﹣ ,則 ≤l≤1;
③若l= ,則﹣ ≤m≤0.
④若l=1,則﹣1≤m≤0或m=1.
其中正確命題的是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)集A={a1 , a2…an}(0≤a1<a2…<an , n≥2)具有性質(zhì)P;對(duì)任意的 i,j(1≤i≤j≤n),ai+aj與aj﹣ai兩數(shù)中至少有一個(gè)屬于A.
(1)分別判斷數(shù)集{0,1,3,4}與{0,2,3,6}是否具有性質(zhì)P,并說明理由;
(2)證明:a1=0,且nan=2(a1+a2+a+..+an
(3)當(dāng)n=5時(shí)若 a2=2,求集合A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A,B滿足,集合A={x|x=7k+3,k∈N},B={x|x=7k﹣4,k∈Z},則A,B兩個(gè)集合的關(guān)系:AB(橫線上填入,或=)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線x+y=1與雙曲線 =1 (a>0,b>0)交于M、N兩點(diǎn),若以M、N兩點(diǎn)為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)O.
(1)求 的值;
(2)若0<a≤ ,求雙曲線離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017江西4月質(zhì)檢】已知橢圓的離心率為,且過點(diǎn).

(1)求橢圓的方程;

(2)過點(diǎn)且斜率大于0的直線與橢圓相交于點(diǎn),,直線軸相交于,兩點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案