精英家教網 > 高中數學 > 題目詳情
已知正項數列{an}滿足a1=1,an+1=an2+2an(n∈N+),令bn=log2(an+1).
(1)求證:數列{bn}為等比數列;
(2)記Tn為數列的前n項和,是否存在實數a,使得不等式對?n∈N+恒成立?若存在,求出實數a的取值范圍;若不存在,請說明理由.
【答案】分析:(1)有條件可得 =2log2(an+1),變形可得 =2,從而數列{bn}為等比數列.
(2)求出數列的通項為 -,可得Tn =1-<1,要使不等式對?n∈N+恒成立,只要 ≥1  即可,即
解不等式組求得a的取值范圍.
解答:解:(1)∵an+1=an2+2an,∴an+1+1=an2+2an+1,∴=2log2(an+1),
∵bn=log2(an+1),∴=2,∴數列{bn}為等比數列.
(2)∵數列{bn}為等比數列,b1=1,q=2,∴bn=2n-1,∴==-
∴Tn=1-+-+…+-=1-<1,∵不等式對?n∈N+恒成立,
只要 ≥1=log0.50.5  即可,即 ,即 ,
解得-≤a<0,或  <a≤1,故a的取值范圍 為[-,0)∪(,1].
點評:本題主要考查數列求和和的方法,等比關系的確定,以及函數的恒成立問題,尋找使不等式對?n∈N+恒成立的條件,是解題的難點.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知正項數列{an}滿足:a1=3,(2n-1)an+2=(2n+1)an-1+8n2(n>1,n∈N*
(1)求證:數列{
an
2n+1
}
為等差數列,并求數列{an}的通項an
(2)設bn=
1
an
,求數列{bn}的前n項和為Sn,并求Sn的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

定義:稱
n
a1+a2+…+an
為n個正數a1,a2,…,an的“均倒數”,已知正項數列{an}的前n項的“均倒數”為
1
2n
,則
lim
n→∞
nan
sn
(  )
A、0
B、1
C、2
D、
1
2

查看答案和解析>>

科目:高中數學 來源: 題型:

已知正項數列an中,a1=2,點(
an
,an+1)
在函數y=x2+1的圖象上,數列bn中,點(bn,Tn)在直線y=-
1
2
x+3
上,其中Tn是數列bn的前項和.(n∈N+).
(1)求數列an的通項公式;
(2)求數列bn的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知正項數列{an}滿足a1=1,an+1=an2+2an(n∈N+),令bn=log2(an+1).
(1)求證:數列{bn}為等比數列;
(2)記Tn為數列{
1
log2bn+1log2bn+2
}
的前n項和,是否存在實數a,使得不等式Tn<log0.5(a2-
1
2
a)
對?n∈N+恒成立?若存在,求出實數a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知正項數列{an},Sn=
1
8
(an+2)2

(1)求證:{an}是等差數列;
(2)若bn=
1
2
an-30
,求數列{bn}的前n項和.

查看答案和解析>>

同步練習冊答案