精英家教網 > 高中數學 > 題目詳情
(2013•昌平區(qū)一模)設定義域為R的函數f(x)滿足以下條件;則以下不等式一定成立的是( 。
(1)對任意x∈R,f(x)+f(-x)=0;
(2)對任意x1,x2∈[1,a],當x2>x1時,有f(x2)>f(x1).
①f(a)>f(0)
②f(
1+a
2
)>f(
a

③f(
1-3a
1+a
)>f(-3)
④f(
1-3a
1+a
)>f(-a)
分析:根據已知中的條件(1)(2),結合奇函數在對稱區(qū)間上單調性相同,可得函數f(x)在區(qū)間[-a,-1]和[1,a]上為增函數,進而判斷四個結論,可得答案.
解答:解:由(1)中對任意x∈R,f(x)+f(-x)=0,可得函數f(x)為奇函數;
由(2)中對任意x1,x2∈[1,a],當x2>x1時,有f(x2)>f(x1),可得函數f(x)在區(qū)間[1,a]上為增函數;
則f(a)>f(1),但無法判斷f(a)與f(0)的大小,故①錯誤;
∵1<
a
1+a
2
<a,故f(
1+a
2
)>f(
a
),即②正確;
由(1)(2)可得函數f(x)在區(qū)間[-a,-1]上也為增函數,但無法判斷f(
1-3a
1+a
)與f(-3)的大小,故③錯誤;
∵-a<
1-3a
1+a
<-1,故f(
1-3a
1+a
)>f(-a),即④正確;
故不等式一定成立的是②④
故選:B
點評:本題以命題的真假判斷為載體考查了函數的奇偶性和函數的單調性,其中分析出函數的單調性是解答的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•昌平區(qū)一模)復數
2i
1-i
的虛部是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•昌平區(qū)一模)已知函數f(x)=
1
3
x3-a2x+
1
2
a
(a∈R).
(Ⅰ)若a=1,求函數f(x)在[0,2]上的最大值;
(Ⅱ)若對任意x∈(0,+∞),有f(x)>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•昌平區(qū)一模)為了解甲、乙兩廠的產品的質量,從兩廠生產的產品中隨機抽取各10件,測量產品中某種元素的含量(單位:毫克).下表是測量數據的莖葉圖:
規(guī)定:當產品中的此種元素含量滿足≥18毫克時,該產品為優(yōu)等品.
(Ⅰ)試用上述樣本數據估計甲、乙兩廠生產的優(yōu)等品率;
(Ⅱ)從乙廠抽出的上述10件產品中,隨機抽取3件,求抽到的3件產品中優(yōu)等品數ξ的分布列及其數學期望E(ξ);
(Ⅲ)從上述樣品中,各隨機抽取3件,逐一選取,取后有放回,求抽到的優(yōu)等品數甲廠恰比乙廠多2件的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•昌平區(qū)一模)已知橢圓M的對稱軸為坐標軸,離心率為
2
2
,且拋物線y2=4
2
x
的焦點是橢圓M的一個焦點.
(Ⅰ)求橢圓M的方程;
(Ⅱ)設直線l與橢圓M相交于A、B兩點,以線段OA,OB為鄰邊作平行四邊形OAPB,其中點P在橢圓M上,O為坐標原點.求點O到直線l的距離的最小值.

查看答案和解析>>

同步練習冊答案