已知向量a≠e,|e|=1對任意t∈R,恒有|a-te|≥|a-e|,則(    )

A.a⊥e                                       B.a⊥(a-e)

C.e⊥(a-e)                                 D.(a+e)⊥(a-e)

C

解析:|a-te|≥|a-e|a2-2ta+t2e2≥a2-2a·e+e2t2-(2a·e)t+2a·e-1≥0,對任意t∈R都成立,

故(2a·e)2-4(2a·e-1)≤0,a·e=1,∴e·(a-e)=a·e-e2=0即e⊥(a-e).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
e
,|
e
|=1,對任意t∈R,恒有|
a
-t
e
|≥|
a
-
e
|,則( 。
A、
a
e
B、
a
⊥(
a
-
e
C、
e
⊥(
a
-
e
D、(
a
+
e
)⊥(
a
-
e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
e
,|
e
|=1,對任意t∈R,恒有|
a
-t
e
|≥|
a
-
e
|,則( 。
A、
a
e
B、
a
⊥(
a
-
e
C、
e
⊥(
a
-
e
D、(
a
+
e
)⊥(
a
-
e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:浙江 題型:單選題

已知向量
a
e
,|
e
|=1,對任意t∈R,恒有|
a
-t
e
|≥|
a
-
e
|,則(  )
A.
a
e
B.
a
⊥(
a
-
e
C.
e
⊥(
a
-
e
D.(
a
+
e
)⊥(
a
-
e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知向量
a
e
,|
e
|=1,對任意t∈R,恒有|
a
-t
e
|≥|
a
-
e
|,則(  )
A.
a
e
B.
a
⊥(
a
-
e
C.
e
⊥(
a
-
e
D.(
a
+
e
)⊥(
a
-
e

查看答案和解析>>

同步練習(xí)冊答案