函數(shù)y=f(x)是定義在R上的增函數(shù),函數(shù)y=f(x-2010)的圖象關(guān)于點(diǎn)(2010,0)對(duì)稱.若實(shí)數(shù)x,y滿足不等式f(x2-6x)+f(y2-8y+24)<0,則x2+y2的取值范圍是( )
A.(0,16)
B.(0,36)
C.(16,36)
D.(0,+∞)
【答案】分析:本題考查的是函數(shù)的性質(zhì)及其綜合應(yīng)用,由已知條件我們可以判定函數(shù)y=f(x)是定義在R上的增函數(shù),而且是奇函數(shù),則不難求出滿足條件實(shí)數(shù)x,y滿足不等式f(x2-6x)+f(y2-8y+24)<0,對(duì)應(yīng)的平面區(qū)域,分析表達(dá)式x2+y2的幾何意義,找出滿足條件的點(diǎn)的坐標(biāo),即可求出答案.
解答:解:∵函數(shù)y=f(x-2010)的圖象關(guān)于點(diǎn)(2010,0)對(duì)稱
∴函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(0,0)對(duì)稱
即函數(shù)y=f(x)為奇函數(shù),
則f(-x)=-f(x)
則不等式f(x2-6x)+f(y2-8y+24)<0可化為:
f(x2-6x)<-f(y2-8y+24)=f(-y2+8y-24)
又由函數(shù)y=f(x)是定義在R上的增函數(shù)
∴x2-6x<-y2+8y-24
即x2-6x+y2-8y+24<0
即(x-3)2+(y-4)2<1
則(x,y)點(diǎn)在以(3,4)為圓心,以1為半徑的圓內(nèi)
而x2+y2表示的是圓內(nèi)任一點(diǎn)到原點(diǎn)距離的平方
∴(5-1)2=16<x2+y2<(5+1)2=36
故選C
點(diǎn)評(píng):函數(shù)的性質(zhì)與圓的方程都是高考必須要考的知識(shí)點(diǎn),此題巧妙地將函數(shù)的性質(zhì)與圓的方程融合在一起進(jìn)行考查,題目有一定的思維含量但計(jì)算量不大,所以題型設(shè)置為選擇題,該試題立足基礎(chǔ)考查了學(xué)生思維能力與運(yùn)算能力以及靈活運(yùn)用所學(xué)數(shù)學(xué)知識(shí)處理相關(guān)問(wèn)題的能力,有一定的選拔作用同時(shí)對(duì)中學(xué)數(shù)學(xué)教學(xué)具有產(chǎn)生較好地導(dǎo)向作用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)y=f(x)=ax+
1x+b
(a≠0)
的圖象過(guò)點(diǎn)(0,-1)且與直線y=-1有且只有一個(gè)公共點(diǎn);設(shè)點(diǎn)P(x0,y0)是函數(shù)y=f(x)圖象上任意一點(diǎn),過(guò)點(diǎn)P分別作直線y=x和直線x=1的垂線,垂足分別是M,N.
(1)求y=f(x)的解析式;
(2)證明:曲線y=f(x)的圖象是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心Q;
(3)證明:線段PM,PN長(zhǎng)度的乘積PM•PN為定值;并用點(diǎn)P橫坐標(biāo)x0表示四邊形QMPN的面積..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某旅游點(diǎn)有50輛自行車供游客租賃使用,管理這些自行車的費(fèi)用是每日115元.根據(jù)經(jīng)驗(yàn),若每輛自行車的日租金不超過(guò)6元,則自行車可以全部租出;若超過(guò)6元,則每提高1元,租不出去的自行車就增加3輛.
規(guī)定:每輛自行車的日租金不超過(guò)20元,每輛自行車的日租金x元只取整數(shù),并要求出租所有自行車一日的總收入必須超過(guò)一日的管理費(fèi)用,用y表示出租所有自行車的日凈收入(即一日中出租所有自行車的總收入減去管理費(fèi)后的所得).
(1)求函數(shù)y=f(x)的解析式及定義域;
(2)試問(wèn)日凈收入最多時(shí)每輛自行車的日租金應(yīng)定為多少元?日凈收入最多為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知:射線OA為y=kx(k>0,x>0),射線OB為y=-kx(x>0),動(dòng)點(diǎn)P(x,y)在∠AOx的內(nèi)部,PM⊥OA于M,PN⊥OB于N,四邊形ONPM的面積恰為k.
(1)當(dāng)k為定值時(shí),動(dòng)點(diǎn)P的縱坐標(biāo)y是橫坐標(biāo)x的函數(shù),求這個(gè)函數(shù)y=f(x)的解析式;
(2)根據(jù)k的取值范圍,確定y=f(x)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于函數(shù)y=f(x),有下列命題:
①若a∈[-2,2],則函數(shù)f(x)=
x2+ax+1
的定域?yàn)镽;
②若f(x)=log
1
2
(x2-3x+2)
,則f(x)的單調(diào)增區(qū)間為(-∞,
3
2
)

③(理)若f(x)=
1
x2-x-2
,則
lim
x→2
[(x-2)f(x)]=0
;
(文)若f(x)=
1
x2-x-2
,則值域是(-∞,0)∪(0,+∞)
④定義在R的函數(shù)f(x),且對(duì)任意的x∈R都有:f(-x)=-f(x),f(1+x)=f(1-x),則4是y=f(x)的一個(gè)周期.
其中真命題的編號(hào)是
 
.(文理相同)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某服裝批發(fā)商場(chǎng)經(jīng)營(yíng)的某種服裝,進(jìn)貨成本40元/件,對(duì)外批發(fā)價(jià)定為60元/件.該商場(chǎng)為了鼓勵(lì)購(gòu)買(mǎi)者大批量購(gòu)買(mǎi),推出優(yōu)惠政策:一次購(gòu)買(mǎi)不超過(guò)50件時(shí),只享受批發(fā)價(jià);一次購(gòu)買(mǎi)超過(guò)50件時(shí),每多購(gòu)買(mǎi)1件,購(gòu)買(mǎi)者所購(gòu)買(mǎi)的所有服裝可在享受批發(fā)價(jià)的基礎(chǔ)上,再降低0.1元/件,但最低價(jià)不低于50元/件.
(Ⅰ)問(wèn)一次購(gòu)買(mǎi)150件時(shí),每件商品售價(jià)是多少?
(Ⅱ)問(wèn)一次購(gòu)買(mǎi)200件時(shí),每件商品售價(jià)是多少?
(Ⅲ)設(shè)購(gòu)買(mǎi)者一次購(gòu)買(mǎi)x件,商場(chǎng)的售價(jià)為y元,試寫(xiě)出函數(shù)y=f(x)的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊(cè)答案