分析 (1)由題意可得,|x-1|-|x-2|的最大小于或等于t,利用絕對值三角不等式求得|x-1|-|x-2|的最大值為1,可得t的范圍,從而求得T.
(2)由題意可得log3m•log3n≥1,利用基本不等式log3m•n≥2$\sqrt{{log}_{3}m{•log}_{3}n}$≥2=log39,從而求得mn的最小值.
解答 解:(1)∵?x0∈R使不等式|x-1|-|x-2|≥t成立,∴|x-1|-|x-2|的最大值大于或等于t,
∵|x-1|-|x-2|≤|x-1-(x-2)|=2,當(dāng)且僅當(dāng)1≤x≤2時,取等號,
故|x-1|-|x-2|的最大值為1,∴t≤1,故T={t|t≤1}.
(2)∵m>1,n>1,對?t∈T,不等式log3m•log3n≥t恒成立,∴l(xiāng)og3m•log3n≥1.
又log3m+log3n=log3m•n≥2$\sqrt{{log}_{3}m{•log}_{3}n}$≥2=log39,∴mn≥9,故mn的最小值為9.
點評 本題主要考查絕對值不等式的解法,絕對值三角不等式、基本不等式的應(yīng)用,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10 | B. | $\sqrt{34}$ | C. | 5 | D. | $\frac{{\sqrt{34}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2.4 | B. | 1.8 | C. | 1.6 | D. | 1.2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{10}{3}$ | B. | $\frac{20}{3}$ | C. | $\frac{2}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>c>b>d | B. | a>b>c>d | C. | c>d>a>b | D. | c>a>b>d |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com