(本小題滿分13分)
如圖,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=CC1,M為AB的中點(diǎn)。
(Ⅰ)求證:BC1∥平面MA1C;
(Ⅱ)求證:AC1⊥平面A1BC。
(Ⅰ)設(shè)AC1∩A1C=O,連結(jié)MO,四邊形AA1C1C為矩形,AO=OC1,AO=OC1,AM=MB,所以MO∥BC1,所以∥平面MA1C(Ⅱ)矩形AA1C1C中,因?yàn)锳C=CC1,所以AC1⊥A1C,直三棱柱ABC-A1B1C1,所以CC1⊥BC,因?yàn)锳C⊥BC BC⊥平面ACC1A1,所以BC⊥AC1,所以AC1⊥平面A1BC
【解析】
試題分析:(Ⅰ)如圖,設(shè)AC1∩A1C=O,連結(jié)MO,
因?yàn)橹比庵鵄BC-A1B1C1,
所以四邊形AA1C1C為矩形,
所以AO=OC1,
在△AC1B中,因?yàn)锳O=OC1,AM=MB,
所以MO∥BC1. 3分
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013050119042853705216/SYS201305011904533182721197_DA.files/image003.png">平面MA1C,MO平面MA1C,
所以∥平面MA1C。 6分
(Ⅱ)在矩形AA1C1C中,因?yàn)锳C=CC1,
所以AC1⊥A1C。 8分
因?yàn)橹比庵鵄BC-A1B1C1,
所以CC1⊥BC,
又因?yàn)锳C⊥BC,AC∩CC1=C,
所以BC⊥平面ACC1A1, 10分
所以BC⊥AC1。 11分
又因?yàn)锽C∩A1C=C,AC1⊥A1C,
所以AC1⊥平面A1BC。 13分
考點(diǎn):線面平行垂直的判定與性質(zhì)
點(diǎn)評:平面外一直線與平面內(nèi)一直線平行,則直線平行于平面;一條直線垂直于平面內(nèi)兩條相交直線,則直線垂直于平面
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數(shù).
(1)求函數(shù)的最小正周期和最大值;
(2)在給出的直角坐標(biāo)系中,畫出函數(shù)在區(qū)間上的圖象.
(3)設(shè)0<x<,且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052519321600001521/SYS201205251933396875338731_ST.files/image001.png">的函數(shù)是奇函數(shù).
(1)求的值;(2)判斷函數(shù)的單調(diào)性;
(3)若對任意的,不等式恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知集合, ,.
(1)求(∁; (2)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題
(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,為的中點(diǎn)。
(Ⅰ)求證:∥平面;
(Ⅱ)求異面直線與所成的角。www.7caiedu.cn
[來源:KS5
U.COM
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)
已知為銳角,且,函數(shù),數(shù)列{}的首項(xiàng).
(1) 求函數(shù)的表達(dá)式;
(2)在中,若A=2,,BC=2,求的面積
(3) 求數(shù)列的前項(xiàng)和
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com