【題目】在數(shù)列中,、是給定的非零整數(shù),.
(1)若,,求;
(2)證明:從中一定可以選取無(wú)窮多項(xiàng)組成兩個(gè)不同的常數(shù)項(xiàng).
【答案】(1)1(2)見(jiàn)解析
【解析】
(1)因,,,,,,,
,,,….
所以自第20項(xiàng)起,每三個(gè)相鄰的項(xiàng)周期的取值為1,1,0.
又,故.
(2)首先證明:數(shù)列必在有限項(xiàng)后出現(xiàn)“0”項(xiàng).
假設(shè)中沒(méi)有“0”項(xiàng),由于,所以當(dāng)時(shí),都有.
若,則.
若,則.
即要么比至少小1,要么比至少小1,
令,,2,3,…,則.
由于是確定的正整數(shù),這樣下去,必然存在某項(xiàng),這與矛盾,
故中必有“0”項(xiàng).
若第一次出現(xiàn)的“0”項(xiàng)為,記,
則自第項(xiàng)開(kāi)始,每三個(gè)相鄰的項(xiàng)周期的取值0、、,
即,,,,1,2,…
所以數(shù)列中一定可以選取無(wú)窮多項(xiàng)組成兩個(gè)不同的常數(shù)列.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列結(jié)論:
“直線l與平面平行”是“直線l在平面外”的充分不必要條件;
若p:,,則:,;
命題“設(shè)a,,若,則或”為真命題;
“”是“函數(shù)在上單調(diào)遞增”的充要條件.
其中所有正確結(jié)論的序號(hào)為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示將同心圓環(huán)均勻分成n()格.在內(nèi)環(huán)中固定數(shù)字1~n.問(wèn)能否將數(shù)字1~n填入外環(huán)格內(nèi),使得外環(huán)旋轉(zhuǎn)任意格后有且僅有一個(gè)格中內(nèi)外環(huán)的數(shù)字相同?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,它的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn),離心率等于.
(1)求橢圓的方程;
(2)過(guò)橢圓的右焦點(diǎn)作直線交橢圓于、兩點(diǎn),交軸于點(diǎn),若,,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓:,左頂點(diǎn)為,經(jīng)過(guò)點(diǎn),過(guò)點(diǎn)作斜率為的直線交橢圓于點(diǎn),交軸于點(diǎn).
(1)求橢圓的方程;
(2)已知為的中點(diǎn),,證明:對(duì)于任意的都有恒成立;
(3)若過(guò)點(diǎn)作直線的平行線交橢圓于點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中錯(cuò)誤的是__________(填序號(hào))
①命題“,有”的否定是“”,有”;
②已知, , ,則的最小值為;
③設(shè),命題“若,則”的否命題是真命題;
④已知, ,若命題為真命題,則的取值范圍是.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,直線經(jīng)過(guò)定點(diǎn),直線經(jīng)過(guò)定點(diǎn),且與相交于點(diǎn),這兩條直線與兩坐標(biāo)軸圍成的四邊形面積為.
(1)證明:,并求定點(diǎn)、的坐標(biāo);
(2)求三角形面積最大值,以及時(shí)的.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的左、右兩個(gè)頂點(diǎn)分別為,點(diǎn)為橢圓上異于的一個(gè)動(dòng)點(diǎn),設(shè)直線的斜率分別為,若動(dòng)點(diǎn)與的連線斜率分別為,且,記動(dòng)點(diǎn)的軌跡為曲線.
(1)當(dāng)時(shí),求曲線的方程;
(2)已知點(diǎn),直線與分別與曲線交于兩點(diǎn),設(shè)的面積為,的面積為,若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校有、、、四件作品參加航模類(lèi)作品比賽.已知這四件作品中恰有兩件獲獎(jiǎng),在結(jié)果揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四件參賽作品的獲獎(jiǎng)情況預(yù)測(cè)如下.
甲說(shuō):“、同時(shí)獲獎(jiǎng).”
乙說(shuō):“、不可能同時(shí)獲獎(jiǎng).”
丙說(shuō):“獲獎(jiǎng).”
丁說(shuō):“、至少一件獲獎(jiǎng)”
如果以上四位同學(xué)中有且只有兩位同學(xué)的預(yù)測(cè)是正確的,則獲獎(jiǎng)的作品是( )
A. 作品與作品B. 作品與作品C. 作品與作品D. 作品與作品
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com