已知橢圓C=1(a>b>0)的一個焦點是F(1,0),且離心率為.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)經(jīng)過點F的直線交橢圓CM,N兩點,線段MN的垂直平分線交y軸于點P(0,y0),求y0的取值范圍.

 

【答案】

(1) =1. (2)

【解析】

試題分析:解:(Ⅰ)設(shè)橢圓C的半焦距是c.依題意,得c=1.

因為橢圓C的離心率為,

所以a=2c=2,b2a2c2=3.   2分

故橢圓C的方程為=1.   3分

(Ⅱ)當(dāng)MNx軸時,顯然y0=0.   4分

當(dāng)MNx軸不垂直時,可設(shè)直線MN的方程為

yk(x-1)(k≠0).  5分

消去y并整理得(3+4k2)x2-8k2x+4(k2-3)=0.   6分

設(shè)M(x1y1),N(x2,y2),線段MN的中點為Q(x3y3),

x1x2.

所以x3,y3k(x3-1)=.  8分

線段MN的垂直平分線的方程為

y=-.

在上述方程中,令x=0,得y0.  9分

當(dāng)k<0時,+4k≤-4;當(dāng)k>0時, +4k≥4.

所以-y0<0或0<y0.  11分

綜上,y0的取值范圍是.  12分

考點:本試題考查了橢圓的知識。

點評:對于橢圓方程的求解主要是根據(jù)其性質(zhì)滿足的的a,b,c的關(guān)系式來解得,同時對于直線與橢圓的相交問題,一般采用聯(lián)立方程組的思想,結(jié)合韋達(dá)定理和判別式來分析參數(shù)的范圍等等,或者研究最值,屬于中檔題。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年泉州一中適應(yīng)性練習(xí)文)(12分)已知橢圓C=1(a>b>0)的離心率為,過右焦點F且斜率為1的直線交橢圓CA,B兩點,N為弦AB的中點。

(1)求直線ONO為坐標(biāo)原點)的斜率KON ;

(2)對于橢圓C上任意一點M ,試證:總存在角∈R)使等式:cossin成立。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年湖北重點中學(xué)4月月考理)(13分

已知橢圓C=1(a>b>0)的離心率為,過右焦點F且斜率為1的直線交橢圓CA,B兩點,N為弦AB

(1)求直線ONO為坐標(biāo)原點)的斜率KON

1)           (2)對于橢圓C上任意一點M ,試證:總存在角∈R)使等式:cossin成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C=1(a>b>0)的離心率為,過右焦點F且斜率為1的直線交橢圓CA,B兩點,N為弦AB的中點。

(1)求直線ONO為坐標(biāo)原點)的斜率KON

(2)對于橢圓C上任意一點M ,試證:總存在角∈R)使等式:cossin成立。w.w.w.k.s.5.u.c.o.m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C=1(a>b>0)的離心率為,過右焦點F且斜率為1的直線交橢圓CA,B兩點,N為弦AB的中點。

(1)求直線ONO為坐標(biāo)原點)的斜率KON ;

(2)對于橢圓C上任意一點M ,試證:總存在角∈R)使等式:cossin成立。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆湖北省武漢市高三9月調(diào)研測試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓C:=1(a>b>0)的離心率為,過右焦點F的直線l與C相交于A、B兩點,當(dāng)l的斜率為1時,坐標(biāo)原點O到l的距離為

(Ⅰ)求a,b的值;

(Ⅱ)C上是否存在點P,使得當(dāng)l繞F轉(zhuǎn)到某一位置時,有成立?若存在,求出所有的P的坐標(biāo)與l的方程;若不存在,說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案