已知A、B、C是直線l上的三點,向量,,滿足:

-[y+2f /(1)]+ln(x+1)=.

(Ⅰ)求函數(shù)y=f(x)的表達式;

(Ⅱ)若x>0,證明:f(x)>;

(Ⅲ)若不等式x2≤f(x2)+m2-2bm-3時,x∈[-1,1]及b∈[-1,1]都恒成立,求實數(shù)m的取值范圍.

 

【答案】

(Ⅰ)f(x)=ln(x+1)

(Ⅱ)證明略

(Ⅲ)m≥3或m≤-3

【解析】 (Ⅰ)∵-[y+2f /(1)]+ln(x+1)=0,∴=[y+2f /(1)]-ln(x+1)

由于A、B、C三點共線 即[y+2f /(1)]+[-ln(x+1)]=1…………………2分

∴y=f(x)=ln(x+1)+1-2f /(1)

f /(x)=,得f /(1)=,故f(x)=ln(x+1)………5分

(Ⅱ)令g(x)=f(x)-,由g/(x)=-=

∵x>0,∴g/(x)>0,∴g(x)在(0,+∞)上是增函數(shù)………………7分

故g(x)>g(0)=0    即f(x)>…………………………………9分

(Ⅲ)原不等式等價于x2-f(x2)≤m2-2bm-3

令h(x)=x2-f(x2)=x2-ln(1+x2),由h/(x)=x-=………11分

當x∈[-1,1]時,h(x)max=0,∴m2-2bm-3≥0

令Q(b)=m2-2bm-3,則

得m≥3或m≤-3……………13分

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知A、B、C是直線l上的不同三點,O是l外一點,向量
OA
OB
,
OC
滿足
OA
=(
3
2
x2+1)
OB
-(lnx-y)
OC
,記y=f(x);
(1)求函數(shù)y=f(x)的解析式;
(2)求函數(shù)y=f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

6、已知a、b、c是直線,α是平面,給出下列命題:
①若a∥b,b⊥c,則a⊥c;②若a⊥b,b⊥c,則a∥c;
③若a∥α,b?α,則a∥b;④若a⊥α,b?α,則a⊥b;
⑤若a與b異面,則至多有一條直線與a、b都垂直.
其中真命題是
①④
.(把符合條件的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A、B、C是直線l上不同的三點,O是l外一點,向量
OA
,
OB
,
OC
滿足:
OA
-(
3
2
x2+1)•
OB
-[ln(2+3x)-y]•
OC
=
0
.記y=f(x).
(Ⅰ)求函數(shù)y=f(x)的解析式:
(Ⅱ)若對任意x∈[
1
6
1
3
]
,不等式|a-lnx|-ln[f'(x)-3x]>0恒成立,求實數(shù)a的取值范圍:
(Ⅲ)若關于x的方程f(x)=2x+b在(0,1]上恰有兩個不同的實根,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a、b、c是直線,β是平面,給出下列命題:
①若a⊥b,b⊥c,則a∥c;
②若a∥b,b⊥c,則a⊥c;
③若a∥β,a?α,α∩β=b則a‖b;
④若a與b異面,且a∥β,則b與β相交;
其中真命題的序號是
②③
②③
.(要求寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A、B、C是直線l上的不同的三點,O是外一點,則向量
OA
OB
、
OC
滿足:
OA
OB
OC
,其中λ+μ=1.
(1)若A、B、C三點共線且有
OA
-(3x+1)•
OB
-(
3
2+3x
-y)•
OC
=
0
成立.記y=f(x),求函數(shù)y=f(x)的解析式;
(2)若對任意x∈[
1
6
1
3
]
,不等式|a-lnx|-ln[f(x)-3x]>0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案