【題目】2016年1月2日凌晨某公司公布的元旦全天交易數(shù)據(jù)顯示,天貓元旦當(dāng)天全天的成交金額為315.5億元.為了了解網(wǎng)購者一次性購物情況,某統(tǒng)計部門隨機(jī)抽查了1月1日100名網(wǎng)購者的網(wǎng)購情況,得到如下數(shù)據(jù)統(tǒng)計表,已知網(wǎng)購金額在2000元以上(不含2000元)的頻率為0.4.

I)先求出的值,再將如圖4所示的頻率分布直方圖繪制完整;

II)對這100名網(wǎng)購者進(jìn)一步調(diào)查顯示:購物金額在2000元以上的購物者中網(wǎng)齡3年以上的有35人,

購物金額在2000元以下(含2000元)的購物者中網(wǎng)齡不足3年的有20人,請?zhí)顚懴旅娴牧新?lián)表,并據(jù)

此判斷能否在犯錯誤的概率不超過0.025的前提下認(rèn)為網(wǎng)購金額超過2000元與網(wǎng)齡在3年以上有關(guān)?

參考數(shù)據(jù):

參考公式:,其中.

【答案】(I;(II列聯(lián)表見解析,犯錯誤的概率不超過的前提下認(rèn)為網(wǎng)購金額超過元與網(wǎng)齡在年以上有關(guān).

【解析】

試題分析:I以下頻率為,所以網(wǎng)購金額在的頻率為,即,且,從而 ,由此可畫出頻率分布直方圖;II)根據(jù)數(shù)據(jù)填寫好表格,代入公式計算得,能在犯錯誤的概率不超過的前提下認(rèn)為網(wǎng)購金額超過元與網(wǎng)齡在年以上有關(guān).

試題解析:

I)因為網(wǎng)購金額在2000元以上(不含2000元)的頻率為0.4,

所以網(wǎng)購金額在的頻率為

,且,

從而 ,相應(yīng)的頻率分布直方圖如圖3所示:

II)相應(yīng)的列聯(lián)表為:

由公式,

因為,

所以據(jù)此列聯(lián)表判斷,在犯錯誤的概率不超過0.025的前提下認(rèn)為網(wǎng)購金額超過2000元與網(wǎng)齡在3年以上有關(guān).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

若函數(shù)的圖象在點處的切線的傾斜角為函數(shù)當(dāng)且僅當(dāng)在處取得極值,其中的導(dǎo)函數(shù),求取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知矩形中,,分別在上,且,沿將四邊形折成四邊形,使點在平面上的射影在直線上,且.

1)求證:平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 是邊長為3的正方形, 平面, 平面 .

(1)證明:平面平面;

(2)在上是否存在一點,使平面將幾何體分成上下兩部分的體積比為?若存在,求出點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平面平面,四邊形是正方形,四邊形是菱形,且,,點分別為邊、的中點,點是線段上的動點.

(1)求證:;

(2)求三棱錐的體積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)上為增函數(shù),,為常數(shù), .

(1)的值;(2)上為單調(diào)函數(shù),的取值范圍;

(3)設(shè),若在上至少存在一個,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體的棱長為1PBC的中點,Q為線段上的動點,過點A,P,Q的平面截該正方體所得的截面記為S.則下列命題正確的是_________寫出所有正確命題的編號

當(dāng)時,S為四邊形

當(dāng)時,S為等腰梯形

當(dāng)時,S的交點R滿足

當(dāng)時,S為六邊形

當(dāng)時,S的面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平行四邊形ABCD中,BC=6,正方形ADEF所在平面與平面ABCD垂直,G,H分別是DF,BE的中點.

(1)求證:GH平面CDE;

(2)若CD=2,DB=4,求四棱錐F—ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】知函數(shù)自然對數(shù)的底數(shù),

求曲的切線方程;

最大值;

設(shè),其中導(dǎo)函數(shù),證明:對任意

查看答案和解析>>

同步練習(xí)冊答案