【題目】已知圓心為(1,2)的圓C與直線l:3x﹣4y﹣5=0相切.
(1)求圓C的方程;
(2)求過點(diǎn)P(3,5)與圓C相切的直線方程.
【答案】
(1)解:以點(diǎn)(1,2)為圓心,與直線l:3x﹣4y﹣5=0相切,
圓心到直線的距離等于半徑,即d= =2,
∴圓C的方程為(x﹣1)2+(y﹣2)2=4
(2)解:設(shè)方程為y﹣5=k(x+3),圓(x﹣1)2+(y﹣2)2=4 圓心坐標(biāo)是(1,2),半徑r=2
由直線與圓相切可得, =2,
∴k= ,
當(dāng)直線的斜率不存在時(shí),此時(shí)直線的方程為x=3也滿足題意
綜上可得,所求的切線方程為x=3和5x﹣12y+45=0
【解析】(1)先求圓心到直線l:3x﹣4y﹣5=0的距離,再求出半徑,即可由圓的標(biāo)準(zhǔn)方程求得圓的方程;(2)設(shè)方程為y﹣5=k(x+3),由直線與圓相切可得, =2可求k,然后檢驗(yàn)斜率不存在時(shí)的情況.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出的以下四個(gè)問題中,不需要用條件語句來描述其算法是( )
A.輸入一個(gè)實(shí)數(shù)x,求它的絕對(duì)值
B.求面積為6的正方形的周長(zhǎng)
C.求三個(gè)數(shù)a、b、c中的最大數(shù)
D.求函數(shù)f(x)= 的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿足c=2,C= .
(Ⅰ)若a= ,求角A的大;
(Ⅱ)若△ABC的面積等于 ,求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)狱c(diǎn)滿足: .
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)設(shè)過點(diǎn)的直線與曲線交于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為(點(diǎn)與點(diǎn)不重合),證明:直線恒過定點(diǎn),并求該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體AC1的棱長(zhǎng)為1,過點(diǎn)A作平面A1BD的垂線,垂足為點(diǎn)H,則以下命題中,錯(cuò)誤的命題是( )
A.點(diǎn)H是△A1BD的垂心
B.AH垂直平面CB1D1
C.AH的延長(zhǎng)線經(jīng)過點(diǎn)C1
D.直線AH和BB1所成角為45°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題12分)已知函數(shù) .
(1)若=0,判斷函數(shù)的單調(diào)性;
(2)若時(shí),<0恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四棱錐P﹣ABCD中,底面ABCD為菱形,且直線PA⊥平面ABCD,又棱PA=AB=2,E為CD的中點(diǎn),∠ABC=60°.
(Ⅰ) 求證:直線EA⊥平面PAB;
(Ⅱ) 求直線AE與平面PCD所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè) ,g(x)=x3﹣x2﹣3.
(1)當(dāng)a=2時(shí),求曲線y=f(x)在x=1處的切線方程;
(2)如果存在x1 , x2∈[0,2],使得g(x1)﹣g(x2)≥M成立,求滿足上述條件的最大整數(shù)M;
(3)如果對(duì)任意的 ,都有f(s)≥g(t)成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面四邊形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD,將△ABD沿BD折起,使得平面ABD⊥平面BCD,如圖.
(1)求證:AB⊥CD;
(2)若M為AD中點(diǎn),求直線AD與平面MBC所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com