【題目】已知函數(shù)f(x)=ex﹣ax+b.
(1)若f(x)在x=2有極小值1﹣e2 , 求實數(shù)a,b的值.
(2)若f(x)在定義域R內單調遞增,求實數(shù)a的取值范圍.

【答案】
(1)解:f′(x)=ex﹣a,

若f(x)在x=2有極小值1﹣e2

,

解得:


(2)解:∵f(x)=ex﹣ax+b,∴f'(x)=ex﹣a,

∵f(x)在R上單調遞增,

∴f'(x)=ex﹣a≥0恒成立,

即a≤ex,x∈R恒成立.

∵x∈R時,ex∈(0,+∞),∴a≤0.

即a的取值范圍為(﹣∞,0]


【解析】(1)求導函數(shù),根據(jù)極值的意義得到關于a,b的方程組,求出a,b的值即可;(2)f(x)在R上單調遞增,則f'(x)=ex﹣a≥0恒成立,分離參數(shù),即可求得a的取值范圍.
【考點精析】通過靈活運用利用導數(shù)研究函數(shù)的單調性和函數(shù)的極值與導數(shù),掌握一般的,函數(shù)的單調性與其導數(shù)的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數(shù)在這個區(qū)間單調遞增;(2)如果,那么函數(shù)在這個區(qū)間單調遞減;求函數(shù)的極值的方法是:(1)如果在附近的左側,右側,那么是極大值(2)如果在附近的左側,右側,那么是極小值即可以解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=ln(2x﹣m)的定義域為集合A,函數(shù)g(x)= 的定義域為集合B.
(Ⅰ)若BA,求實數(shù)m的取值范圍;
(Ⅱ)若A∩B=,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來,霧霾日趨嚴重,我們的工作、生活受到了嚴重的影響,如何改善空氣質量已成為當今的熱點問題.某空氣凈化器制造廠,決定投入生產某型號的空氣凈化器,根據(jù)以往的生產銷售經驗得到下面有關生產銷售的統(tǒng)計規(guī)律:每生產該型號空氣凈化器x(百臺),其總成本為P(x)(萬元),其中固定成本為12萬元,并且每生產1百臺的生產成本為10萬元(總成本=固定成本+生產成本).銷售收入Q(x)(萬元)滿足Q(x)= ,假定該產品產銷平衡(即生產的產品都能賣掉),根據(jù)以述統(tǒng)計規(guī)律,請完成下列問題:
(1)求利潤函數(shù)y=f(x)的解析式(利潤=銷售收入﹣總成本);
(2)工廠生產多少百臺產品時,可使利潤最多?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù) 的定義域是;若函數(shù) 的最大值為 ,則實數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校一?荚嚁(shù)學測試成績的莖葉圖和頻率分布直方圖都受到不同程序的破壞,可見部分如下

試根據(jù)圖表中的信息解答下列問題:
(1)求全班的學生人數(shù)及分數(shù)在 之間的頻數(shù);
(2)為快速了解學生的答題情況,老師按分層抽樣的方法從位于 ,和 分數(shù)段的試卷中抽取8份進行分析,再從中任選2人進行交流,求交流的2名學生中,恰有一名成績位于 分數(shù)段的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設命題p:實數(shù)x滿足|x﹣1|>a其中a>0;命題q:實數(shù)x滿足 <1
(1)若命題p中a=1,且p∧q為真,求實數(shù)x的取值范圍;
(2)若¬p是q的必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 + =1與x軸交于A、B兩點,過橢圓上一點P(x0 , y0)(P不與A、B重合)的切線l的方程為 + =1,過點A、B且垂直于x軸的垂線分別與l交于C、D兩點,設CB、AD交于點Q,則點Q的軌跡方程為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知A(1,2,-1),B(2,0,2).
(1)在x軸上求一點P,使|PA|=|PB|;
(2)若xOz平面內的點M到點A的距離與到點B的距離相等,求點M的坐標滿足的條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某射擊隊有8名隊員,其中男隊員5名,女隊員3名,從中隨機選3名隊員參加射擊表演活動.
(1)求選出的3名隊員中有一名女隊員的概率;
(2)求選出的3名隊員中女隊員人數(shù)比男隊員人數(shù)多的概率.

查看答案和解析>>

同步練習冊答案