【題目】如圖,平面平面,四邊形和是全等的等腰梯形,其中,且,點為的中點,點是的中點.
(Ⅰ)求證: 平面;
(Ⅱ)請在圖中所給的點中找出兩個點,使得這兩點所在的直線與平面垂直,并給出證明;
(Ⅲ)在線段上是否存在點,使得平面?如果存在,求出的長度;如果不存在,請說明理由.
【答案】(Ⅰ)見解析(Ⅱ)見解析 (Ⅲ)見解析
【解析】試題分析:(Ⅰ)由四邊形是等腰梯形,點為的中點,點是的中點,得,從而可證平面;(Ⅱ)依題意可證 ,再根據(jù)可證為菱形,即可證;(Ⅲ)假設存在點,使得∥平面,可證為平行四邊形,從而推出∥平面,即可證∥平面,則為平行四邊形,從而推出矛盾,即可得出結論.
試題解析:(Ⅰ)∵四邊形是等腰梯形,點為的中點,點是的中點
∴
又∵平面平面,平面平面
∴平面
(Ⅱ) 點為所求的點
∵平面
∴
又∵,且
∴為菱形
∴
∵,
∴平面
(Ⅲ)假設存在點,使得∥平面
由,所以為平行四邊形,
∴∥
∵平面
∴∥平面
又∵
∴平面∥平面,
∴∥平面
∴∥,
∴為平行四邊形
∴,矛盾,
∴不存在點,使得∥平面
科目:高中數(shù)學 來源: 題型:
【題目】棉花的纖維長度是評價棉花質量的重要指標,某農科所的專家在土壤環(huán)境不同的甲、乙兩塊實驗地分別種植某品種的棉花,為了評價該品種的棉花質量,在棉花成熟后,分別從甲、乙兩地的棉花中各隨機抽取20根棉花纖維進行統(tǒng)計,結果如下表:(記纖維長度不低于300mm的為“長纖維”,其余為“短纖維”)
纖維長度 | (0,100) | [100,200) | [200,300) | [300,400) | [400,500] |
甲地(根數(shù)) | 3 | 4 | 4 | 5 | 4 |
乙地(根數(shù)) | 1 | 1 | 2 | 10 | 6 |
(1)由以上統(tǒng)計數(shù)據(jù),填寫下面2×2列聯(lián)表,并判斷能否在犯錯誤概率不超過0.025的前提下認為“纖維長度與土壤環(huán)境有關系”.
甲地 | 乙地 | 總計 | |
長纖維 | |||
短纖維 | |||
總計 |
附:(1) ;(2)臨界值表;
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(2)現(xiàn)從上述40根纖維中,按纖維長度是否為“長纖維”還是“短纖維”采用分層抽樣的方法抽取8根進行檢測,在這8根纖維中,記乙地“短纖維”的根數(shù)為X,求X的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面ABCD是平行四邊形,側面PAD是邊長為2的正三角形,AB=BD= ,PB=
(Ⅰ)求證:平面PAD⊥平面ABCD;
(Ⅱ)設Q是棱PC上的點,當PA∥平面BDQ時,求二面角A﹣BD﹣Q的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】春節(jié)期間,受煙花爆竹集中燃放影響,我國多數(shù)城市空氣中PM2.5濃度快速上升,特別是在大氣擴散條件不利的情況下,空氣質量在短時間內會迅速惡化.2017年除夕18時和初一2時,國家環(huán)保部門對8個城市空氣中PM2.5濃度監(jiān)測的數(shù)據(jù)如表(單位:微克/立方米).
除夕18時PM2.5濃度 | 初一2時PM2.5濃度 | |
北京 | 75 | 647 |
天津 | 66 | 400 |
石家莊 | 89 | 375 |
廊坊 | 102 | 399 |
太原 | 46 | 115 |
上海 | 16 | 17 |
南京 | 35 | 44 |
杭州 | 131 | 39 |
(Ⅰ)求這8個城市除夕18時空氣中PM2.5濃度的平均值;
(Ⅱ)環(huán)保部門發(fā)現(xiàn):除夕18時到初一2時空氣中PM2.5濃度上升不超過100的城市都是“禁止燃放煙花爆竹“的城市,濃度上升超過100的城市都未禁止燃放煙花爆竹.從以上8個城市中隨機選取3個城市組織專家進行調研,記選到“禁止燃放煙花爆竹”的城市個數(shù)為X,求隨機變量y的分布列和數(shù)學期望;
(Ⅲ)記2017年除夕18時和初一2時以上8個城市空氣中PM2.5濃度的方差分別為s12和s22 , 比較s12和s22的大小關系(只需寫出結果).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=pe﹣x+x+1(p∈R). (Ⅰ)當實數(shù)p=e時,求曲線y=f(x)在點x=1處的切線方程;
(Ⅱ)求函數(shù)f(x)的單調區(qū)間;
(Ⅲ)當p=1時,若直線y=mx+1與曲線y=f(x)沒有公共點,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知MOD函數(shù)是一個求余函數(shù),記MOD(m,n)表示m除以n的余數(shù),例如MOD(8,3)=2.如圖是某個算法的程序框圖,若輸入m的值為48時,則輸出i的值為( )
A.7
B.8
C.9
D.10
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在直角梯形中,,,且.現(xiàn)以為一邊向形外作正方形,然后沿邊將正方形翻折,使平面與平面垂直,為的中點,如圖2.
(1)求證:平面;
(2)求證:平面;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)學名著《算學啟蒙》中有如下問題:“松長五尺,竹長兩尺,松日自半,竹日自倍,松竹何日而長等.”如圖是源于其思想的一個程序框圖,若輸入的a,b的值分別為16,4,則輸出的n的值為( )
A.4
B.5
C.6
D.7
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=(x-1)3-ax-b,x∈R,其中a,b∈R。
(1)求f(x)的單調區(qū)間;
(2)若f(x)存在極點x0 , 且f(x1)=f(x0),其中x1≠x0 , 求證:x1+2x0=3;
(3)設a>0,函數(shù)g(x)=∣f(x)∣,求證:g(x)在區(qū)間[0,2]上的最大值不小于
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com