2.如圖,正四面體V-ABC中,D是棱VC的中點,則AD與面ABC所成角的正弦值為$\frac{\sqrt{2}}{3}$.

分析 設底面ABC的中心為F,則D在底面的射影為CF的中點G,于是∠DAG為所求線面角,設正四面體的棱長為2,求出AD和DG即可得出答案.

解答 解:取AB的中點E,連接CE,VE,
過V作VF⊥平面ABC,則F為△ABC的中心,
設正四面體的棱長為2,則CE=$\sqrt{3}$,CF=$\frac{2}{3}CE$=$\frac{2\sqrt{3}}{3}$,
取CF的中點G,連接DG,則DG∥VF,
∴DG⊥平面ABC,∴∠DAG為AD與平面ABC所成的角,
∵VF=$\sqrt{V{C}^{2}-C{F}^{2}}$=$\frac{2\sqrt{6}}{3}$,∴DG=$\frac{1}{2}$VF=$\frac{\sqrt{6}}{3}$,
又AD=CE=$\sqrt{3}$,
∴sin∠DAG=$\frac{DG}{AD}$=$\frac{\sqrt{2}}{3}$.
故答案為:$\frac{\sqrt{2}}{3}$.

點評 本題考查了直線與平面所成角的計算,作出所求的線面角是解題關鍵,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.已知命題p:?x∈R,x2+x-6≤0,則命題¬p是(  )
A.?x∈R,x2+x-6>0B.?x∈R,x2+x-6>0C.?x∈R,x2+x-6>0D.?x∈R,x2+x-6<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.“a<-1”是“直線ax+2y-1=0的斜率大于1”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.雙曲線$\frac{{x}^{2}}{m}$-y2=1(m>0)的實軸長為6,則m等于( 。
A.3B.6C.9D.36

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知命題p:?a∈(-∞,-2),曲線f(x)=$\frac{{x}^{2}+a}{x+1}$在點(1,f(1))處切線的傾斜角$θ>\frac{π}{4}$,則下面敘述正確的是( 。
A.¬p為:?a∈(-∞,-2),曲線f(x)=$\frac{{x}^{2}+a}{x+1}$在點(1,f(1))處切線的傾斜角θ>$\frac{π}{4}$
B.¬p為:?a∈(-∞,-2),曲線f(x)=$\frac{{x}^{2}+a}{x+1}$在點(1,f(1))處切線的傾斜角$θ>\frac{π}{4}$
C.¬p:?a∈[2,+∞),曲線f(x)=$\frac{{x}^{2}+a}{x+1}$在點(1,f(1))處切線的傾斜角θ≤$\frac{π}{4}$
D.¬p是假命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設f(x)=$\left\{\begin{array}{l}{{e}^{x}(x≤0)}\\{lnx(x>0)}\end{array}\right.$,則f(f($\frac{1}{2}$))=( 。
A.$\sqrt{e}$B.ln$\frac{1}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知f(x)是定義在(0,+∞)上的函數(shù),對任意兩個不相等的正數(shù)x1,x2,都有$\frac{{x}_{2}f({x}_{1})-{x}_{1}f({x}_{2})}{{x}_{2}-{x}_{1}}$<0,記a=$\frac{f({2}^{0.2})}{{2}^{0.2}}$,b=$\frac{f(sin\frac{π}{6})}{sin\frac{π}{6}}$,c=$\frac{f(lo{g}_{π}3)}{lo{g}_{π}3}$,則a、b、c的大小關系是b<c<a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.設命題p:?x∈R,x2+1>0,則¬p為( 。
A.?x∈R,x2+1>0B.?x0∈R,x${\;}_{0}^{2}$+1≤0
C.?x0∈R,x${\;}_{0}^{2}$+1<0D.?x0∈R,x${\;}_{0}^{2}$+1≤0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.在△ABC中,a,b,c分別為內角A,B,C所對的邊長,已知a=1,b=2,cosC=$\frac{1}{4}$.
(1)求△ABC的周長;
(2)求cos(A-C)的值.

查看答案和解析>>

同步練習冊答案