橢圓
x2
4
+y2=1
的左、右焦點分別為F1,F(xiàn)2,點P在橢圓上,若P,F(xiàn)1,F(xiàn)2是一個直角三角形的三個頂點,則點P到x軸的距離為( 。
A、
1
2
B、
3
3
C、
1
2
3
3
D、以上均不對
分析:橢圓
x2
4
+y2=1
,可得a,b,c.設(shè)點M是橢圓的短軸的上頂點,則∠F1MF2是橢圓上的點與點F1,F(xiàn)2張開的最大角,而tan∠F2OM=
3
,可得F2OM=60°,可得F1OF2=120°,得到點P不可能是直角頂點.
當PF2⊥x軸或PF1⊥x軸時,把x=c=
3
代入橢圓的方程即可得出.
解答:解:如圖所示,
精英家教網(wǎng)橢圓
x2
4
+y2=1
,∴a2=4,b2=1,c=
a2-b2
=
3

設(shè)點M是橢圓的短軸的上頂點,則∠F1MF2是橢圓上的點與點F1,F(xiàn)2張開的最大角,而tan∠F2OM=
3
,∴F2OM=60°
F1OF2=120°,∴點P不可能是直角頂點.
當PF2⊥x軸或PF1⊥x軸時,把x=c=
3
代入橢圓的方程可得:
(
3
)2
4
+y2=1
,解得y=±
1
2

|PF1|=|PF2|=
1
2

∴點P到x軸的距離是
1
2

故選:A.
點評:本題考查了橢圓的標準方程及其性質(zhì),屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
4
+y2=1
的兩個焦點為F1、F2,過F1作垂直于x軸的直線與橢圓相交,一個交點為P,則P到F2的距離為( 。
A、
3
2
B、
3
C、
7
2
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知橢圓
x24
+y2=1
的焦點為F1、F2,點P為橢圓上任意一點,過F2作∠F1PF2的外角平分線的垂線,垂足為點Q,過點Q作y軸的垂線,垂足為N,線段QN的中點為M,則點M的軌跡方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△AOQ,O為坐標原點,點A(1,0),Q為橢圓
x24
+y2=1上的動點,求AQ中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•浙江模擬)已知A,B是雙曲線
x2
4
-y2=1
的兩個頂點,點P是雙曲線上異于A,B的一點,連接PO(O為坐標原點)交橢圓
x2
4
+y2=1
于點Q,如果設(shè)直線PA,PB,QA的斜率分別為k1,k2,k3,且k1+k2=-
15
8
,假設(shè)k3>0,則k3的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•上饒二模)已知橢圓
x2
4
+y2=1
的下頂點為A,點B是橢圓上的任意的一點,點C、D是直線x-y-4=0上的兩點(C在D的下方),則
AB
CD
|
CD
|
的最大值是( 。

查看答案和解析>>

同步練習冊答案