【題目】已知函數(shù)f(x)=1﹣|x|+ ,若f(x﹣2)>f(3),則x的取值范圍是

【答案】(﹣1,5)
【解析】解:函數(shù)f(x)=1﹣|x|+ ,
則f(﹣x)=1﹣|﹣x|+ =f(x),
故得f(x)是偶函數(shù).
又∵y=﹣|x|是減函數(shù),y= 也是減函數(shù)
∴函數(shù)f(x)=1﹣|x|+ 在定義域內(nèi)是減函數(shù).
故f(x﹣2)>f(3)等價于(x﹣2)2<32
解得:﹣1<x<5.
∴不等式的解集為{x|﹣1<x<5}.
所以答案是:(﹣1,5).
【考點精析】本題主要考查了奇偶性與單調(diào)性的綜合的相關知識點,需要掌握奇函數(shù)在關于原點對稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關于原點對稱的區(qū)間上有相反的單調(diào)性才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,該幾何體是由一個直三棱柱ADE﹣BCF和一個正四棱錐P﹣ABCD組合而成,AD⊥AF,AE=AD=2.
(Ⅰ)證明:平面PAD⊥平面ABFE;
(Ⅱ)求正四棱錐P﹣ABCD的高h,使得二面角C﹣AF﹣P的余弦值是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合,對于集合的兩個非空子集, ,若,則稱為集合的一組互斥子集.記集合的所有互斥子集的組數(shù)為 (為同一組互斥子集”)

1寫出, 的值;

2)求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】微信運動和運動手環(huán)的普及,增強了人民運動的積極性,每天一萬步稱為一種健康時尚,某中學在全校范圍內(nèi)內(nèi)積極倡導和督促師生開展“每天一萬步”活動,經(jīng)過幾個月的扎實落地工作后,學校想了解全校師生每天一萬步的情況,學校界定一人一天走路不足千步為不健康生活方式,不少于千步為超健康生活方式者,其他為一般生活方式者,學校委托數(shù)學組調(diào)查,數(shù)學組采用分層抽樣的辦法去估計全校師生的情況,結合實際及便于分層抽樣,認定全校教師人數(shù)為人,高一學生人數(shù)為人,高二學生人數(shù)人,高三學生人數(shù),從中抽取人作為調(diào)查對象,得到了如圖所示的這人的頻率分布直方圖,這人中有人被學校界定為不健康生活方式者.

(1)求這次作為抽樣調(diào)查對象的教師人數(shù);

(2)根據(jù)頻率分布直方圖估算全校師生每人一天走路步數(shù)的中位數(shù)(四舍五入精確到整數(shù)步);

(3)校辦公室欲從全校師生中速記抽取人作為“每天一萬步”活動的慰問對象,計劃學校界定不健康生活方式者鞭策性精神鼓勵元,超健康生活方式者表彰獎勵元,一般生活方式者鼓勵性獎勵元,利用樣本估計總體,將頻率視為概率,求這次校辦公室慰問獎勵金額恰好為元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知關于x的不等式ax2﹣(a+2)x+2<0.
(1)當a=﹣1時,解不等式;
(2)當a∈R時,解不等式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=cosxsin(x+ )﹣
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)△ABC中,角A,B,C所對的邊為a,b,c,f( )= ,B= ,a=1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為迎接中國共產(chǎn)黨的十九大的到來,某校舉辦了“祖國,你好”的詩歌朗誦比賽.該校高三年級準備從包括甲、乙、丙在內(nèi)的7名學生中選派4名學生參加,要求甲、乙、丙這3名同學中至少有1人參加,且當這3名同學都參加時,甲和乙的朗誦順序不能相鄰,那么選派的4名學生不同的朗誦順序的種數(shù)為( )

A. 720 B. 768 C. 810 D. 816

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,內(nèi)角A、B、C所對的邊分別為a、b、c,a=
(1)求bcosC+ccosB的值;
(2)若cosA= ,求b+c的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:關于x的不等式x2+2ax+4>0,對一切x∈R恒成立,q:函數(shù)f(x)=(3﹣2a)x是增函數(shù),若p或q為真,p且q為假,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案