已知函數(shù)f(x)是奇函數(shù),當x>0時,f(x)=ax(a>0且a≠1),且f(-2)=-3,則a的值為


  1. A.
    數(shù)學公式
  2. B.
    3
  3. C.
    9
  4. D.
    數(shù)學公式
A
分析:根據(jù)奇函數(shù)的性質(zhì)將f(-2)轉(zhuǎn)化成-f(2),代入已知解析式,解之即可求出所求.
解答:∵函數(shù)f(x)是奇函數(shù),f(-2)=-3
∴f(-2)=-f(2)=-3即f(2)=3
∵當x>0時,f(x)=ax(a>0且a≠1),
∴a2=3解得a=
故選A.
點評:本題主要考查了奇函數(shù)的性質(zhì),以及函數(shù)求值,同時考查了計算能力,屬于基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是奇函數(shù),且在區(qū)間[1,2]上單調(diào)遞減,則f(x)在區(qū)間[-2,-1]上是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是奇函數(shù),函數(shù)g(x)=f(x-2)+3,那么g(x)的圖象的對稱中心的坐標是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是奇函數(shù),且當x≥0時,f(x)=ln(x+1),則當x<0時,f(x)的解析式為
f(x)=-ln(-x+1)
f(x)=-ln(-x+1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是奇函數(shù),且當x>0時,f(x)=x3+2x+1,則當x<0時,f(x)的解析式為
f(x)=x3+2x-1
f(x)=x3+2x-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是奇函數(shù),f(x)的定義域為(-∞,+∞).當x<0時,f(x)=
ln(-ex)
x
.這里,e為自然對數(shù)的底數(shù).
(1)若函數(shù)f(x)在區(qū)間(a,a+
1
3
)(a>0)
上存在極值點,求實數(shù)a的取值范圍;
(2)如果當x≥1時,不等式f(x)≥
k
x+1
恒成立,求實數(shù)k的取值范圍;
(3)試判斷 ln
1
n+1
2(
1
2
+
2
3
+…+
n
n+1
)-n
的大小關(guān)系,這里n∈N*,并加以證明.

查看答案和解析>>

同步練習冊答案