已知函數(shù):
(1)討論函數(shù)的單調(diào)性;
(2)若對(duì)于任意的,若函數(shù)在 區(qū)間上有最值,求實(shí)數(shù)的取值范圍.
(1)當(dāng)時(shí),的單調(diào)增區(qū)間為,減區(qū)間為;當(dāng)時(shí),的單調(diào)增區(qū)間為,無減區(qū)間;(2)

試題分析:(1)這是一道含參函數(shù)的單調(diào)性問題,先求出定義域,求導(dǎo),根據(jù)進(jìn)行討論,當(dāng)時(shí),的單調(diào)增區(qū)間為,減區(qū)間為;當(dāng)時(shí),的單調(diào)增區(qū)間為,無減區(qū)間;(2)有(1)知,代入,得
這是一個(gè)二次函數(shù),在區(qū)間上有最值,在區(qū)間上總不是單調(diào)函數(shù),又,
由題意知:對(duì)任意恒成立,
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025709307501.png" style="vertical-align:middle;" />
,對(duì)任意,恒成立,

   ∴.
試題解析:(1)由已知得的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025709510532.png" style="vertical-align:middle;" />,且
當(dāng)時(shí),的單調(diào)增區(qū)間為,減區(qū)間為
當(dāng)時(shí),的單調(diào)增區(qū)間為,無減區(qū)間;
(2)

在區(qū)間上有最值,
在區(qū)間上總不是單調(diào)函數(shù),

由題意知:對(duì)任意恒成立,
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025709307501.png" style="vertical-align:middle;" />  
對(duì)任意恒成立
  ∵   ∴
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(I)若,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求證:
(Ⅲ)若函數(shù)的圖象在點(diǎn)處的切線的傾斜角為,對(duì)于任意的,函數(shù)的導(dǎo)函數(shù))在區(qū)間上總不是單調(diào)函數(shù),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知x=1是函數(shù)的一個(gè)極值點(diǎn),
(Ⅰ)求a的值;
(Ⅱ)當(dāng)時(shí),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),且在時(shí)函數(shù)取得極值.
(1)求的單調(diào)增區(qū)間;
(2)若,
(Ⅰ)證明:當(dāng)時(shí),的圖象恒在的上方;
(Ⅱ)證明不等式恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),為自然對(duì)數(shù)的底,
(1)求的最值;
(2)若關(guān)于方程有兩個(gè)不同解,求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù),其對(duì)應(yīng)的圖像為曲線C;若曲線C過,且在點(diǎn)處的切斜線率
(1)求函數(shù)的解析式
(2)證明不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),其中.
(1)若,求曲線在點(diǎn)處的切線方程;
(2)求函數(shù)的極大值和極小值,若函數(shù)有三個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列說法不正確的是(     )
A.方程有實(shí)數(shù)根函數(shù)有零點(diǎn)
B.函數(shù)有兩個(gè)零點(diǎn)
C.單調(diào)函數(shù)至多有一個(gè)零點(diǎn)
D.函數(shù)在區(qū)間上滿足,則函數(shù)在區(qū)間內(nèi)有零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025756622379.png" style="vertical-align:middle;" />,部分對(duì)應(yīng)值如下表, 的導(dǎo)函數(shù)的圖象如圖所示.下列關(guān)于的命題:

①函數(shù)的極大值點(diǎn)為;
②函數(shù)上是減函數(shù);
③如果當(dāng)時(shí),的最大值是2,那么的最大值為4;
④當(dāng)時(shí),函數(shù)個(gè)零點(diǎn);
⑤函數(shù)的零點(diǎn)個(gè)數(shù)可能為0、1、2、3、4個(gè).
其中正確命題的序號(hào)是                           

查看答案和解析>>

同步練習(xí)冊(cè)答案