化簡(jiǎn):
PB
+
OP
-
OB
=
0
0
分析:利用向量的加減運(yùn)算即可得出.
解答:解:∵化簡(jiǎn):
PB
+
OP
-
OB
=
OB
-
OB
=
0

故答案為
0
點(diǎn)評(píng):熟練掌握向量的加減運(yùn)算是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

化簡(jiǎn)
OP
-
QP
+
PS
+
SP
的結(jié)果等于( 。
A、
QP
B、
OQ
C、
SP
D、
SQ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè) A、B、C是直線l上的三點(diǎn),向量
OA
,
OB
,
OC
滿足關(guān)系:
OA
+(y-
3
sinxcosx)
OB
-(
1
2
+sin2x)
OC
=
0

(Ⅰ)化簡(jiǎn)函數(shù)y=f(x)的表達(dá)式;
(Ⅱ)若函數(shù)g(x)=f(
1
2
x+
π
3
)
x∈[0,
12
]
的圖象與直線y=b的交點(diǎn)的橫坐標(biāo)成等差數(shù)列,試求實(shí)數(shù)b的值;
(Ⅲ)令函數(shù)h(x)=
2
(sinx+cosx)+sin2x-a,若對(duì)任意的x1x2∈[0,
π
2
]
,不等式h(x1)≤f(x2)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知G為△ABC內(nèi)一點(diǎn),且
AB
+
AC
=3
AG

(1)化簡(jiǎn)
AG
+
BG
+
CG

(2)若O為平面內(nèi)不同于G的任意一點(diǎn),求證:
OG
=
1
3
OA
+
OB
+
OC
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè) A、B、C是直線l上的三點(diǎn),向量
OA
OB
,
OC
滿足關(guān)系:
OA
+(y-
3
sinxcosx)
OB
-(
1
2
+sin2x)
OC
=
0

(Ⅰ)化簡(jiǎn)函數(shù)y=f(x)的表達(dá)式;
(Ⅱ)若函數(shù)g(x)=f(
1
2
x+
π
3
)
,x∈[0,
12
]
的圖象與直線y=b的交點(diǎn)的橫坐標(biāo)成等差數(shù)列,試求實(shí)數(shù)b的值;
(Ⅲ)令函數(shù)h(x)=
2
(sinx+cosx)+sin2x-a,若對(duì)任意的x1,x2∈[0,
π
2
]
,不等式h(x1)≤f(x2)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案