【題目】4月23人是“世界讀書(shū)日”,某中學(xué)在此期間開(kāi)展了一系列的讀書(shū)教育活動(dòng),為了解本校學(xué)生課外閱讀情況,學(xué)校隨機(jī)抽取了100名學(xué)生對(duì)其課外閱讀時(shí)間進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均課外閱讀時(shí)間(單位:分鐘)的頻率分布直方圖,若將日均課外閱讀時(shí)間不低于60分鐘的學(xué)生稱為“讀書(shū)謎”,低于60分鐘的學(xué)生稱為“非讀書(shū)謎”
(1)根據(jù)已知條件完成下面2×2的列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為“讀書(shū)謎”與性別有關(guān)?

非讀書(shū)迷

讀書(shū)迷

合計(jì)

15

45

合計(jì)


(2)將頻率視為概率,現(xiàn)在從該校大量學(xué)生中,用隨機(jī)抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中的“讀書(shū)謎”的人數(shù)為X,若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列,期望E(X)和方程D(X) 附:K2= n=a+b+c+d

P(K2≥k0

0.100

0.050

0.025

0.010

0.001

k0

2.706

3.841

5.024

6.635

10.828

【答案】
(1)解:完成下面的2×2列聯(lián)表如下

非讀書(shū)迷

讀書(shū)迷

合計(jì)

40

15

55

20

25

45

合計(jì)

60

40

100

≈8.249

VB8.249>6.635,故有99%的把握認(rèn)為“讀書(shū)迷”與性別有關(guān)


(2)解:視頻率為概率.則從該校學(xué)生中任意抽取1名學(xué)生恰為讀書(shū)迷的概率為 .由題意可知X~B(3, ),P(x=i)= (i=0,1,2,3)

從而分布列為

X

0

1

2

3

P

E(x)=np= ,D(x)=np(1﹣p)=


【解析】(1)利用頻率分布直方圖,直接計(jì)算填寫(xiě)表格,然后利用個(gè)數(shù)求解K2 , 判斷即可.(2)求出概率的分布列,然后利用超幾何分布求解期望與方差即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)= 的定義域?yàn)?/span>

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P﹣ABCD的底面為矩形,PA是四棱錐的高,PB與DC所成角為45°,F(xiàn)是PB的中點(diǎn),E是BC上的動(dòng)點(diǎn).
(Ⅰ)證明:PE⊥AF;
(Ⅱ)若BC=2BE=2 AB,求直線AP與平面PDE所成角的大小..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=sinx(2 cosx﹣sinx)+1 (Ⅰ)求f(x)的最小正周期;
(Ⅱ)討論f(x)在區(qū)間[﹣ ]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從雙曲線 =1(a>0,b>0)的左焦點(diǎn)F引圓x2+y2=a2的切線,切點(diǎn)為T,延長(zhǎng)FT交雙曲線右支于點(diǎn)P,若M為線段FP的中點(diǎn),O為坐標(biāo)原點(diǎn),則|MO|﹣|MT|與b﹣a的大小關(guān)系為(
A.|MO|﹣|MT|>b﹣a
B.|MO|﹣|MT|=b﹣a
C.|MP|﹣|MT|<b﹣a
D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知m∈R,函數(shù)f(x)= ,g(x)=x2﹣2x+2m2﹣1,若函數(shù)y=f(g(x))﹣m有6個(gè)零點(diǎn)則實(shí)數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)的定義域?yàn)镽,并滿足以下條件:①對(duì)任意x∈R,有f(x)>0;②對(duì)任意x,y∈R,有f(xy)=[f(x)]y;③
(1)求證:f(x)在R上是單調(diào)增函數(shù);
(2)若f(4x+a2x+1﹣a2+2)≥1對(duì)任意x∈R恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐P﹣ABCD,底面ABCD是∠A=60°、邊長(zhǎng)為a的菱形,又PD⊥底ABCD,且PD=CD,點(diǎn)M、N分別是棱AD、PC的中點(diǎn).

(1)證明:DN∥平面PMB;
(2)證明:平面PMB⊥平面PAD;
(3)求點(diǎn)A到平面PMB的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓兩焦點(diǎn) ,并且經(jīng)過(guò)點(diǎn)
(1)求橢圓的方程;
(2)若過(guò)點(diǎn)A(0,2)的直線l與橢圓交于不同的兩點(diǎn)M、N(M在A、N之間),試求△OAM與△OAN面積之比的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案