一種產(chǎn)品的年產(chǎn)量情況是:第一年為a件,第二年比第一年增長(zhǎng)p1%,第三年比第二年增長(zhǎng)p2%,且p1>0,p2>0,p1+p2=2p.如果年平均增長(zhǎng)x%,則有(    )

A.x=p              B.x≤p               C.x≥p              D.x<p

提示:正確地列出等式a(1+x%)2=a(1+p1%)2(1+p2%)2,根據(jù)均值定理可求.

答案:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某企業(yè)常年生產(chǎn)一種出口產(chǎn)品,根據(jù)需求預(yù)測(cè):進(jìn)入21世紀(jì)以來(lái),前8年在正常情況下,該產(chǎn)品產(chǎn)量將平衡增長(zhǎng).已知2000年為第一年,頭4年年產(chǎn)量f(x)(萬(wàn)件)如表所示:
x 1 2 3 4
f(x) 4.00 5.58 7.00 8.44
(1)建系,畫(huà)出2000~2003年該企業(yè)年產(chǎn)量的散點(diǎn)圖;
(2)建立一個(gè)能基本反映(誤差小于0.1)這一時(shí)期該企業(yè)年產(chǎn)量發(fā)展變化的函數(shù)模型,并求之.
(3)2013年(即x=14)因受到某外國(guó)對(duì)我國(guó)該產(chǎn)品反傾銷的影響,年產(chǎn)量應(yīng)減少30%,試根據(jù)所建立的函數(shù)模型,確定2013年的年產(chǎn)量應(yīng)該約為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一種產(chǎn)品的年產(chǎn)量情況是:第一年為a件,第二年比第一年增長(zhǎng)p1%,第三年比第二年增長(zhǎng)p2%,且p1>0,p2>0,p1p2=2p,如果年平均增長(zhǎng)x%,則x,p的大小關(guān)系是       。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

           某企業(yè)準(zhǔn)備投產(chǎn)一種新產(chǎn)品,經(jīng)測(cè)算,已知每年生產(chǎn)萬(wàn)件的該種產(chǎn)品所需要的總成本為萬(wàn)元,市場(chǎng)銷售情況可能出現(xiàn)好、中、差三種情況,各種情況發(fā)生的概率和相應(yīng)的價(jià)格p(元)與年產(chǎn)量x之間的函數(shù)關(guān)系如下表所示.

市場(chǎng)情況

概率

價(jià)格p與產(chǎn)量x的函數(shù)關(guān)系式

0.3

0.5

0.2

              設(shè)L1、L2、L3分別表示市場(chǎng)情況好、中、差時(shí)的利潤(rùn),隨機(jī)變量ξx表示當(dāng)年產(chǎn)量為x而市場(chǎng)情況不確定時(shí)的利潤(rùn).

   (1)分別求利潤(rùn)L1、L2、L3與年產(chǎn)量x之間的函數(shù)關(guān)系式;

   (2)當(dāng)產(chǎn)量x確定時(shí),求隨機(jī)變量ξx的期望Eξx;

   (3)求年產(chǎn)量x為何值時(shí),隨機(jī)變量ξx的期望Eξx取得最大值(不需求最大值).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

一種產(chǎn)品的年產(chǎn)量情況是:第一年為a件,第二年比第一年增長(zhǎng)p1%,第三年比第二年增長(zhǎng)p2%,且p1>0,p2>0,p1+p2=2p,如果年平均增長(zhǎng)x%,則x,p的大小關(guān)系是________。

查看答案和解析>>

同步練習(xí)冊(cè)答案