如圖示,在△ABC中,若A,B兩點坐標分別為(2,0),(-3,4)點C在AB上,且OC平分∠BOA.
(1)求∠AOB的余弦值;  
(2)求點C的坐標.

【答案】分析:(1)由題意可得,把已知代入可求
(2)設點C(x,y),由OC平分∠BOA可得cos∠AOC=cos∠BOC即=;再由點C在AB即共線,建立關(guān)于x,y的關(guān)系,可求
解答:解:(1)由題意可得,,
==
(2)設點C(x,y),由OC平分∠BOA可得cos∠AOC=cos∠BOC

=
,
∴y=2x①
又點C在AB即共線,
∴4x+5y-8=0②
由①②解得,
∴點C的坐標為
點評:本題注意考查了向量的夾角公式的坐標表示的應用,向量共線的坐標表示在三角形中的應用,解題的關(guān)鍵是借助于已知圖象中的條件,靈活的應用向量的基本知識.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖示,在△ABC中,若A,B兩點坐標分別為(2,0),(-3,4)點C在AB上,且OC平分∠BOA.
(1)求∠AOB的余弦值;  
(2)求點C的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年山西太原五中高二第一學期10月月考理科數(shù)學試卷(解析版) 題型:解答題

如圖示,在底面為直角梯形的四棱椎P   ABCD中,AD//BC,ÐABC= 900, PA^平面ABCD,PA= 4,AD= 2,AB=2,BC = 6.

(1)求證:BD^平面PAC ;

(2)求二面角A—PC—D的正切值;

(3)求點D到平面PBC的距離.

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖示,在△ABC中,若A,B兩點坐標分別為(2,0),(-3,4)點C在AB上,且OC平分∠BOA.
(1)求∠AOB的余弦值; 
(2)求點C的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(如圖示)在△ABC中,若, 

  (1)判斷△ABC的形狀;

  (2)求的值。

查看答案和解析>>

同步練習冊答案