【題目】已知函數(shù)在點(diǎn)處的切線斜率為負(fù)值.
(Ⅰ)討論的單調(diào)性;
(Ⅱ)若有兩個(gè)極值點(diǎn),,求證:.
【答案】(1)見解析(2)見解析
【解析】分析:(Ⅰ)由,得,分別令求得的范圍,可得函數(shù)增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間;(Ⅱ)由(Ⅰ)知,當(dāng)時(shí),有兩個(gè)極值點(diǎn),,且,.
可得,設(shè),則,可得在區(qū)間上單調(diào)遞減,所以,.
詳解:(Ⅰ)的定義域?yàn)?/span>,
,
由題知,,所以.
因?yàn)?/span>,所以只需研究的符號.
①當(dāng),即時(shí),
,為的單減區(qū)間;
②當(dāng),即時(shí),
令,解得,,
所以,,,的變化情況如下表:
- | + | - | |||
極小值 | 極大值 |
所以,的單調(diào)遞減區(qū)間為,,
單調(diào)遞增區(qū)間為.
(Ⅱ)由(Ⅰ)知,當(dāng)時(shí),有兩個(gè)極值點(diǎn),,
且,.
所以,
.
設(shè),則,
因?yàn)?/span>,所以,
所以,在區(qū)間上單調(diào)遞減.
所以,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的方程為.
(1)求過點(diǎn)且與圓相切的直線的方程;
(2)直線過點(diǎn),且與圓交于、兩點(diǎn),若,求直線的方程;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+bx+c(a>0),且f(1).
(1)求證:函數(shù)f(x)有兩個(gè)不同的零點(diǎn);
(2)設(shè)x1,x2是函數(shù)f(x)的兩個(gè)不同的零點(diǎn),求|x1﹣x2|的取值范圍;
(3)求證:函數(shù)f(x)在區(qū)間(0,2)內(nèi)至少有一個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l1:kx-y+4=0與直線l2:x+ky-3=0相交于點(diǎn)P,則當(dāng)實(shí)數(shù)k變化時(shí),點(diǎn)P到直線4x-3y+10=0的距離的最大值為( 。
A.2B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為實(shí)常數(shù),函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若無窮數(shù)列滿足:是正實(shí)數(shù),當(dāng)時(shí),,則稱是“-數(shù)列”.已知數(shù)列是“-數(shù)列”.
(Ⅰ)若,寫出的所有可能值;
(Ⅱ)證明:是等差數(shù)列當(dāng)且僅當(dāng)單調(diào)遞減;
(Ⅲ)若存在正整數(shù),對任意正整數(shù),都有,證明:是數(shù)列的最大項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,左、右焦點(diǎn)分別為,且與拋物線的焦點(diǎn)重合.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若過的直線交橢圓于兩點(diǎn),過的直線交橢圓于兩點(diǎn),且,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)求曲線在點(diǎn)處的切線方程;
(2)若函數(shù),求的單調(diào)區(qū)間;并證明:當(dāng)時(shí),;
(3)證明:當(dāng)時(shí),函數(shù)有最小值,設(shè)最小值為,求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)圓圓.點(diǎn)分別是圓 上的動(dòng)點(diǎn),P為直線上的動(dòng)點(diǎn),則的最小值為_________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com