已知二次函數(shù)y=f1(x)的圖象以原點為頂點且過點(1,1),反比例函數(shù)y=f2(x)的圖象與直線y=x的兩個交點間距離為8,f(x)= f1(x)+ f2(x).
(Ⅰ) 求函數(shù)f(x)的表達式;
(Ⅱ) 證明:當a>3時,關于x的方程f(x)= f(a)有三個實數(shù)解.

(Ⅰ) f(x)=x2+.(Ⅱ) f(x)=f(a),得x2+=a2+, 即=-x2+a2+.在同一坐標系內作出f2(x)=和f3(x)= -x2+a2+的大致圖象,其中f2(x)的圖象是以坐
標軸為漸近線,且位于第一、三象限的雙曲線, f3(x)與的圖象是以(0, a2+)為頂點,開口向下的拋物線.因此, f2(x)與f3(x)的圖象在第三象限有一個交點,即f(x)=f(a)有一個負數(shù)解.又∵f2(2)="4," f3(2)= -4+a2+,當a>3時,. f3(2)-f2(2)= a2+-8>0,當a>3時,在第一象限f3(x)的圖象上存在一點(2,f(2))在f2(x)圖象的上方.f2(x)與f3(x)的圖象在第一象限有兩個交點,即f(x)=f(a)有兩個正數(shù)解.因此,方程f(x)=f(a)有三個實數(shù)解.

解析試題分析:(Ⅰ)由已知,設f1(x)=ax2,由f1(1)=1,得a="1," ∴f1(x)= x2.設f2(x)=(k>0),它的圖象與直線y=x的交點分別為A(,),B(-,-)
=8,得k="8,." ∴f2(x)=.故f(x)=x2+.
(Ⅱ) (證法一)f(x)=f(a),得x2+=a2+,
=-x2+a2+.在同一坐標系內作出f2(x)=
f3(x)= -x2+a2+的大致圖象,其中f2(x)的圖象是以坐
標軸為漸近線,且位于第一、三象限的雙曲線, f3(x)與的圖象是以(0, a2+)為頂點,開口向下的拋物線.因此, f2(x)與f3(x)的圖象在第三象限有一個交點,即f(x)=f(a)有一個負數(shù)解.又∵f2(2)="4," f3(2)= -4+a2+,當a>3時,. f3(2)-f2(2)= a2+-8>0,當a>3時,在第一象限f3(x)的圖象上存在一點(2,f(2))在f2(x)圖象的上方.f2(x)與f3(x)的圖象在第一象限有兩個交點,即f(x)=f(a)有兩個正數(shù)解.因此,方程f(x)=f(a)有三個實數(shù)解.
(證法二)由f(x)=f(a),得x2+=a2+,即(x-a)(x+a-)=0,得方程的一個解x1=a.方程x+a-=0化為ax2+a2x-8=0,由a>3,△=a4+32a>0,得x2=, x3=,x2<0, x3>0, ∵x1≠ x2,且x2≠ x3.若x1= x3,即a=,則3a2=, a4=4a,得a=0或a=,這與a>3矛盾,∴x1≠ x3.故原方程f(x)=f(a)有三個實數(shù)解.
考點:本題考查了函數(shù)與方程的運用
點評:函數(shù)與方程是高中數(shù)學重要的數(shù)學思想, 將函數(shù)問題轉化為方程問題求解,可以使函數(shù)中好多問題變得比較好解決

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分13分)設函數(shù)滿足:都有,且時,取極小值
(1)的解析式;
(2)當時,證明:函數(shù)圖象上任意兩點處的切線不可能互相垂直;
(3)設, 當時,求函數(shù)的最小值,并指出當取最小值時相應的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)
(本小題滿分12分)某地方政府準備在一塊面積足夠大的荒地上建一如圖所示的一個矩形綜合性休閑廣場,其總面積為3000平方米,其中場地四周(陰影部分)為通道,通道寬度均為2米,中間的三個矩形區(qū)域將鋪設塑膠地面作為運動場地(其中兩個小場地形狀相同),塑膠運動場地占地面積為平方米.

(1)分別寫出用表示和用表示的函數(shù)關系式(寫出函數(shù)定義域);
(2)怎樣設計能使S取得最大值,最大值為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
, 求滿足的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)
設函數(shù)滿足:對任意的實數(shù)
(Ⅰ)求的解析式;
(Ⅱ)若方程有解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題共兩個小題,每題5分,滿分10分)
① 已知不等式的解集是,求的值;
② 若函數(shù)的定義域為,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)
(1)若,求的單調區(qū)間;
(2)若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分10分)
定義在上的函數(shù)滿足,且當時,
(1)求上的表達式;
(2)若,且,求實數(shù)的取值范圍。

查看答案和解析>>

同步練習冊答案