已知數(shù)列{an}滿足a1=100,an+1-an=2n,則
an
n
的最小值
 
考點:數(shù)列遞推式
專題:綜合題,等差數(shù)列與等比數(shù)列
分析:a2-a1=2,a3-a2=4,…,an+1-an=2n,這n個式子相加,就有an+1=100+n(n+1),故an=n(n-1)+100=n2-n+100,可得
an
n
=n+
100
n
-1,利用基本不等式,即可求出
an
n
的最小值.
解答: 解:a2-a1=2,
a3-a2=4,

an+1-an=2n,
這n個式子相加,就有an+1=100+n(n+1),
即an=n(n-1)+100=n2-n+100,
an
n
=n+
100
n
-1≥2
n•
100
n
-1=19,
當(dāng)且僅當(dāng)n=
100
n
,即n=10時,
an
n
取最小值19.
故答案為:19.
點評:本題考查數(shù)列的性質(zhì)和應(yīng)用,考查疊加法,考查基本不等式的運用,確定
an
n
=n+
100
n
-1是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖的程序框圖,則輸出的S值等于(  )
A、
1
6
+
1
7
+
1
8
+
1
9
B、
1
5
+
1
6
+
1
7
+
1
8
+
1
9
C、
1
6
+
1
7
+
1
8
+
1
9
+
1
10
D、
1
5
+
1
6
+
1
7
+
1
8
+
1
9
+
1
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且3Sn=4an-4.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)cn=log2a1+log2a2+…+log2an,Tn=
1
c1
+
1
c2
+…+
1
cn
,求使k
n•2n
n+1
≥(2n-9)Tn
恒成立的實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正四棱錐P-ABCD的棱長為2
3
a,側(cè)面等腰三角形的頂角為30°,則從點A出發(fā),環(huán)繞側(cè)面一周后回到A點的最短路程等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正三棱柱ABC-A1B1C的底面邊長為4cm,高為7cm,則當(dāng)一質(zhì)點自點A出發(fā),沿著三棱柱的側(cè)面繞行兩周到達點A1的路程最短時,質(zhì)點沿著側(cè)面的前進方向所在直線與底面ABC所成角的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1-x2,函數(shù)g(x)=2ax-3a+2(a>0),若對任意x1∈[0,1],存在x2∈[
1
2
,1],使得f(x1)=g(x2)成立,則實數(shù)a的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(-3,2),
b
=(2,m)且
a
b
,則m=( 。
A、3
B、-3
C、
4
3
D、-
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)調(diào)查發(fā)現(xiàn),人們長期食用含高濃度甲基汞的魚類會引起汞中毒,其中羅非魚體內(nèi)汞含量比其它魚偏高.現(xiàn)從一批數(shù)量很大的羅非魚中隨機地抽出15條作樣本,經(jīng)檢測得各條魚的汞含量的莖葉圖(以小數(shù)點前的數(shù)字為莖,小數(shù)點后一位數(shù)字為葉)如圖.《中華人民共和國環(huán)境保護法》規(guī)定食品的汞含量不得超過1.0ppm.
(Ⅰ)檢查人員從這15條魚中,隨機抽出3條,求3條中恰有1條汞含量超標的概率;
(Ⅱ)若從這批數(shù)量很大的魚中任選3條魚,記ξ表示抽到的汞含量超標的魚的條數(shù).以此15條魚的樣本數(shù)據(jù)來估計這批數(shù)量很大的魚的總體數(shù)據(jù),求ξ的分布列及數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2.以AC的中點O為球心、AC為直徑的球面交PD于點M,交PC于點N.
(Ⅰ)求證:平面ABM⊥平面PCD;
(Ⅱ)求直線CD與平面ACM所成的角的正弦值;
(Ⅲ)求點N到平面ACM的距離.

查看答案和解析>>

同步練習(xí)冊答案