【題目】甲、乙、丙、丁、戊五人排成一排,甲和乙都排在丙的同一側(cè),排法種數(shù)為( )

A. 12 B. 40 C. 60 D. 80

【答案】D

【解析】先從五個(gè)位置中選出三個(gè)給甲乙丙三人,共有種選法,其中丙在兩端,有種選法,剩余兩個(gè)位置乙丙全排,有種,剩余兩個(gè)位置給丁、戊,種,所以排法種數(shù)為= 80,故選D.

點(diǎn)睛:本題考查排列組合問(wèn)題的應(yīng)用,屬于中檔題目. 求排列應(yīng)用題的主要方法有:1.直接法:把符合條件的排列數(shù)直接列式計(jì)算.2.特殊元素(或位置)優(yōu)先安排的方法.即先排特殊元素或特殊位置.3.排列、組合混合問(wèn)題先選后排的方法.4.相鄰問(wèn)題捆綁處理的方法.即可以把相鄰元素看作一個(gè)整體參與其他元素排列,同時(shí)注意捆綁元素的內(nèi)部排列.5.不相鄰問(wèn)題插空處理的方法.即先考慮不受限制的元素的排列,再將不相鄰的元素插在前面元素排列的空當(dāng)中.6.分排問(wèn)題直排處理的方法.7.“小集團(tuán)”排列問(wèn)題中先集體后局部的處理方法.8.定序問(wèn)題除法處理的方法.即可以先不考慮順序限制,排列后再除以定序元素的全排列.9.正難則反,等價(jià)轉(zhuǎn)化的方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A(x1 , f(x1)),B(x2 , f(x2))是函數(shù)f(x)=2sin(ωx+φ) 圖象上的任意兩點(diǎn),且角φ的終邊經(jīng)過(guò)點(diǎn) ,若|f(x1)﹣f(x2)|=4時(shí),|x1﹣x2|的最小值為
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)當(dāng) 時(shí),不等式mf(x)+2m≥f(x)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,幾何體是四棱錐,為正三角形,.

(1)求證:;

(2)若,M為線段AE的中點(diǎn),求證:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓 , 軸上的動(dòng)點(diǎn) 分別切圓 兩點(diǎn).

(1) ,求切線 的方程;

(2),求直線 的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在下列向量組中,可以把向量 =(3,2)表示出來(lái)的是(
A. =(0,0), =(1,2)
B. =(﹣1,2), =(5,﹣2)
C. =(3,5), =(6,10)
D. =(2,﹣3), =(﹣2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(14分)關(guān)于x的不等式ax2+(a﹣2)x﹣2≥0(a∈R)

(1)已知不等式的解集為(﹣∞,﹣1]∪[2,+∞),求a的值;

(2)解關(guān)于x的不等式ax2+(a﹣2)x﹣2≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)報(bào)道,巴基斯坦由中方投資運(yùn)營(yíng)的瓜達(dá)爾港目前已通航.這是一個(gè)可以?810萬(wàn)噸油輪的深水港,通過(guò)這一港口,中國(guó)船只能夠更快到達(dá)中東和波斯灣地區(qū),這相當(dāng)于給中國(guó)平添了一條大動(dòng)脈!在打造中巴經(jīng)濟(jì)走廊協(xié)議(簡(jiǎn)稱協(xié)議)中,能源投資約340億美元,公路投資約59億美元,鐵路投資約38億美元,高架鐵路投資約16億美元,瓜達(dá)爾港投資約6.6億美元,光纖通訊投資約為0.4億美元.

有消息稱,瓜達(dá)爾港的月貨物吞吐量將是目前天津、上海兩港口月貨物吞吐量之和.表格記錄了2015年天津、上海兩港口的月吞吐量(單位:百萬(wàn)噸):

1月

2月

3月

4月

5月

6月

7月

8月

9月

10月

11月

12月

天津

24

22

26

23

24

26

27

25

28

24

25

26

上海

32

27

33

31

30

31

32

33

30

32

30

30

(Ⅰ)根據(jù)協(xié)議提供信息,用數(shù)據(jù)說(shuō)明本次協(xié)議投資重點(diǎn);

(Ⅱ)從表中12個(gè)月任選一個(gè)月,求該月天津、上海兩港口月吞吐量之和超過(guò)55百萬(wàn)噸的概率;

(Ⅲ)將(Ⅱ)中的計(jì)算結(jié)果視為瓜達(dá)爾港每個(gè)月貨物吞吐量超過(guò)55百萬(wàn)噸的概率,設(shè)為瓜達(dá)爾未來(lái)12個(gè)月的月貨物吞吐量超過(guò)55百萬(wàn)噸的個(gè)數(shù),寫出的數(shù)學(xué)期望(不需要計(jì)算過(guò)程).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】 已知拋物線,過(guò)焦點(diǎn)的動(dòng)直線交拋物線于兩點(diǎn),拋物線在兩點(diǎn)處的切線相交于點(diǎn).)求的值;()求點(diǎn)的縱坐標(biāo);

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《數(shù)學(xué)九章》中對(duì)已知三角形三邊長(zhǎng)求三角形的面積的求法填補(bǔ)了我國(guó)傳統(tǒng)數(shù)學(xué)的一個(gè)空白,與著名的海倫公式完全等價(jià),由此可以看出我國(guó)古代已具有很高的數(shù)學(xué)水平,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上.以小斜冪乘大斜冪減上,余四約之,為實(shí).一為從隔,開(kāi)平方得積.”若把以上這段文字寫成公式,即S= .現(xiàn)有周長(zhǎng)為2 + 的△ABC滿足sinA:sinB:sinC=( ﹣1): :( +1),試用以上給出的公式求得△ABC的面積為(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案