(2012•溫州一模)如圖,直線(xiàn)l⊥平面α,垂足為O,正四面體ABCD的棱長(zhǎng)為4,C在平面α內(nèi),B是直線(xiàn)l上的動(dòng)點(diǎn),則當(dāng)O到AD的距離為最大時(shí),正四面體在平面α上的射影面積為( 。
分析:確定直線(xiàn)BC與動(dòng)點(diǎn)O的空間關(guān)系,得到最大距離為AD到球心的距離+半徑,再考慮取得最大距離時(shí)四面體的投影情況,即可求得結(jié)論.
解答:解:由題意,直線(xiàn)BC與動(dòng)點(diǎn)O的空間關(guān)系:點(diǎn)O是以BC為直徑的球面上的點(diǎn),所以O(shè)到AD的距離為四面體上以BC為直徑的球面上的點(diǎn)到AD的距離,最大距離為AD到球心的距離(即BC與AD的公垂線(xiàn))+半徑=2
2
+2.
再考慮取得最大距離時(shí)四面體的投影情況,此時(shí)我們注意到AD垂直平面OBC,且平行平面α,故其投影是以AD為底,O到AD 的距離投影,即(2
2
+2)cos45°=2+
2
為高的等腰三角形,其面積=
1
2
×4×(2+
2
)=4+2
2

故選A.
點(diǎn)評(píng):本題考查點(diǎn)、線(xiàn)、面間的距離計(jì)算,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•溫州一模)已知函數(shù)f(x)滿(mǎn)足f(x)=2f(
1
x
)
,當(dāng)x∈[1,3]時(shí),f(x)=lnx,若在區(qū)間[
1
3
,3]
內(nèi),函數(shù)g(x)=f(x)-ax,有三個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•溫州一模)如圖,在矩形ABCD中,AB=8,BC=4,E,F(xiàn),G,H分別為四邊的中點(diǎn),且都在坐標(biāo)軸上,設(shè)
OP
OF
,
CQ
CF
(λ≠0).
(Ⅰ)求直線(xiàn)EP與GQ的交點(diǎn)M的軌跡Γ的方程;
(Ⅱ)過(guò)圓x2+y2=r2(0<r<2)上一點(diǎn)N作圓的切線(xiàn)與軌跡Γ交于S,T兩點(diǎn),若
NS
NT
+r2=0
,試求出r的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•溫州一模)如圖,在△ABC中,AD⊥BC,垂足為D,且BD:DC:AD=2:3:6.
(Ⅰ)求∠BAC的大;
(Ⅱ)設(shè)E為AB的中點(diǎn),已知△ABC的面積為15,求CE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•溫州一模)某高校進(jìn)行自主招生面試時(shí)的程序如下:共設(shè)3道題,每道題答對(duì)給10分、答錯(cuò)倒扣5分(每道題都必須回答,但相互不影響).設(shè)某學(xué)生對(duì)每道題答對(duì)的概率都為
23
,則該學(xué)生在面試時(shí)得分的期望值為
15
15
分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•溫州一模)若圓x2+y2-4x+2my+m+6=0與y軸的兩個(gè)交點(diǎn)A,B位于原點(diǎn)的同側(cè),則實(shí)數(shù)m的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案